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Chapter 1

Introduction

For the biochemical reactions in living systems, the knotty issues arise due to the

accessibility, distribution and orientation of the proteins or enzymes to react with

the substrates and the overall reaction dynamics is governed by the the chemical

and mechanical steps involved[1, 2, 3]. Heterogeneity is also developed in systems

with countably small number of reactants with multiple conformations or with var-

ious diffusion mechanisms and in some situations additional complexity comes in

due to the diffusion of ions under an applied external field in the environment of

proteins[4, 5]. Not only in the bulk but now it is also possible to monitor a single

enzyme activity in a heterogeneous and complex environment[1, 2] with the advent

of single molecule force-clamp technique like atomic force microscopy[6] and fluo-

rescence imaging techniques like wide-field and confocal microscopy. On the other

hand, the study of interfacial enzymatic reaction is gaining increasing attention in

biological systems as an enzyme plays a crucial role of lipid metabolism and as medi-

ator of intercellular signalling processes[1, 2, 3, 7]. Even a reaction in a homogeneous

solution with very few number of reactants the kinetics can be stochastic in nature

where fluctuation of the number of reactants become as important as the mean num-

ber and the traditional rate equation picture of kinetics fails miserably [8, 9, 10].

Usually the dynamics of chemical reactions at the level of single or few molecules

can be described by the chemical master equation where the time evolution of the

number of reactants or conformations is considered as a kind of random-walk pro-

cess in the population or conformational state space[11, 12, 13, 14, 15]. Further

source of statistical inhomogeneity comes in when some non-chemical rate processes

are involved namely, due to various diffusive mechanical movement of particles over

several phases[1, 2], for different interactions among the conformational states of

a reactant [11] and during random as well as biased attachment and detachment

of ligands to a receptor[12] with many active sites. In ion channels the complex-

ity comes in due to the movement of the ions through the channels made by the

charged proteins with multiple conformations under the biased voltage along with

the diffusive motion of the ions[4, 5].

1
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In the proposed thesis, our main motivation is to study the kinetic and thermo-

dynamic aspects of some heterogeneous and complex biochemical processes with the

emphasis on the enzyme catalysis and ion transport in proteins. To deal with such

complex systems, we resort to the master equation approach which offers a general

framework to characterize a dynamical system in terms of some rate processes in

various time and space scales. From the kinetics of such a process through a mas-

ter equation, a straight forward non-equilibrium thermodynamic characterization is

also possible using the recently developed fluctuation theorems. For example, to

describe the interfacial enzyme kinetics of lipid metabolism, one needs to consider

the mechanical motion of the enzyme on the fluid and product phases as well as

the chemical reaction steps involved[1, 2]. For this kind of inhomogeneous situa-

tion analytical master equation is of no help and a kinetic Monte Carlo simulation

technique is the only option[16]. Again for a single oligomeric enzyme with a few

number of active sites, analytical model of master equation description of the ki-

netics provides immense qualitative understanding about the effect of external me-

chanical force on the reaction[12, 17]. Similar master equation can also explain the

non-equilibrium cooperativity phenomena developed in single oligomeric enzyme at

chemiostatic condition on the basis of different substrate binding mechanisms[18].

The kinetics and non-equilibrium thermodynamics of a voltage gated potassium ion

channel in presence of constant as well as oscillating voltages can also be studied

in terms of the master equation. The common underlying thread here is a master

equation description of single molecule activity to understand the overall kinetics

and nonequilibrium thermodynamics of various heterogeneous biochemical processes

by which ultimately the reaction in bulk can be predicted. In the present thesis en-

titled, “Stochastic approaches to heterogeneous and complex reaction kinetics” we

have discussed the related issues with the emphasis on the following topics.

A. Interfacial enzyme kinetics

The study of interfacial enzymatic reaction is important in biological science as

enzyme plays a crucial role as a catalyst of lipid metabolism. Berg et al.[3, 7, 19],

Jain et al.[20] and Ghomashchi et al.[21, 22] carried out several experiments in

bulk solution to understand the action of the interfacial enzyme, phospholipase,

namely, PLA1 and PLA2, on the phospholipid vesicles, micelles or mono-layer. They

observed that the interfacial enzymes hydrolyze the phospholipid molecules either

in the scooting or hopping mechanism[3, 20]. They also found the lag-burst phe-

nomenon which is characterized by initial slow hydrolysis in the lag phase, followed

by a sudden increase in activity of the enzyme by two or three orders of magnitude,

the burst phase[3]. Later, Honger et al.[23], Jorgensen et al. [24] and Mouritsen et

al.[25] extensively studied the lag-burst phenomenon both experimentally and theo-

retically. They observed that the formation of an appreciable size of product domain

is responsible for the lag-burst kinetics. Recently, Gudmand et al. have studied the
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action of PLA2 on phospholipid monolayers by the wide-field fluorescence micro-

scope with single molecule sensitivity[1]. From this experiment it is now possible

to directly visualize the activity and diffusive behavior of single PLA2 enzyme in a

heterogeneous lipid environment during active hydrolysis. Although a lot of kinetic

analysis had been performed[23, 25], it is pertinent here to develop a microscopic

theory based on the single enzyme experimental data and the theory should meet

the kinetic result in the limit of bulk interfacial catalysis.

B. Effect of external force on reaction kinetics

Recently, with the advent of atomic force microscope(AFM) or magnetic or op-

tical tweezers, pulling experiments have been widely used to probe the subangstrom

level changes[26, 27]. Single molecule force spectroscopy represents a novel experi-

mental method to perform mechanochemistry, in which forces of the order of 10-100

pN applied in manipulating transition state structure even in the solution phase or

in living cells to understand chemical reactivity[26, 27, 28, 29, 30]. Originally, Bell

had shown that the rate of the chemical reaction in cell to cell adhesion process is

influenced by the hydrodynamic forces[31]. Now this concept is extended to arbi-

trary chemical reactions in biosystem using external mechanical force. In a series

of works, Szabo and others have established the concept of single molecule pulling

experiment to get kinetics and non-equilibrium thermodynamics[32, 33]. Fernandez

et al. have championed the idea of controlling chemical reaction kinetics by the

mechanical force by first showing the reduction in disulphide bonds in a protein,

a thiol/disulphide exchange reaction, as this reaction serves as the key step in the

function of folding processes of proteins[28, 29, 30]. It is shown that ten fold increase

in reduction rate is possible by applying force over 300 pN range through a force-

clamp AFM on an engineered polyprotein. Recent experimental and theoretical

analysis of Gumpp et al. on the single molecule level by the triggering of enzymatic

activity through AFM opens the new avenue to study the direct influence of force to

manipulate bio-catalytic reactions[6]. Although a great deal of theoretical effort has

been utilized on the exploration of single molecule mechano-chemical systems, the

attempt to find out the nonequilibrium dynamical properties as a consequence of the

fluctuation theorem is not yet explored with its full potential. Here it is relevant to

show how the trajectory based approach can provide the kinetic and thermodynamic

effect of mechanical force in an oligomeric enzyme catalysis.

C. Cooperativity in oligomeric enzyme

Cooperativity phenomenon is mainly developed in the oligomeric proteins due to

different binding affinity of ligands to the subunits of the protein or enzyme[34, 35].

The oligomeric proteins show either positive, negative or no cooperativity phe-

nomenon. The common example of positive cooperativity is the binding of oxygen

molecule to hemoglobin and the binding curve is sigmoidal in nature. However,

binding curve of oxygen of closely related myoglobin becomes hyperbolic in nature
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which is an example of no cooperativity phenomenon. In 1910, A.V. Hill made a

first attempt to interpret the sigmoidal binding curve of oxygen of hemoglobin by

assuming that all ligand molecules would have to bind to the oligomeric protein si-

multaneously and to characterize the nature of cooperativity he introduced the Hill

coefficient[34, 35]. For positive and negative cooperative cases, the Hill coefficient,

becomes greater than or less than one, respectively, whereas the non-cooperative

case is characterized by Hill coefficient equal to one. By considering all individual

binding steps, Adair first systematically described the sigmoidal binding curve of

the oxygen of hemoglobin[36]. These types of cooperativity based on the affinity of

the ligand binding belong to the class of allosteric cooperativity. In 1965, Monod,

Wyman and Changeux presented the first comprehensive model for the description of

allosteric enzyme which is sometimes referred to as the symmetrical model or MWC

model[37]. It became a guideline for the improved understanding of regulatory

mechanisms on enzymes. However, the drawback is that the negative cooperativity

phenomenon can not be explained by this model. In 1976 Koshland, Nemethy and

Filmer proposed an alternative model for allosteric enzymes, the concerted model

which described the positive, negative as well as no cooperativity phenomenon[38].

These two models are widely used to describe the allosteric cooperativity. There is

another type of cooperativity, termed as temporal cooperativity[39], reflected in the

zero-order ultra sensitivity of the phosphorylation-dephosphorylation cycle which

is shown to be mathematically equivalent to the allosteric cooperativity Beside al-

losterism, cooperativity has been studied in monomeric enzymes with only a single

substrate binding site. This has led to the important concept of hysteretic[40, 41, 42]

and mnemonic enzymes[43, 44]. These two types of enzymes show the cooperativity

phenomena due to the slow conformational disorder of the active site. Clearly, a

general classification of cooperativity based on the above substrate binding mecha-

nisms for a single oligomeric enzyme is needed here which can provide a theoretical

basis of kinetic and thermodynamic origin of cooperativity.

D. Ion channel kinetics and thermodynamics

Voltage-gated ion channel is a transmembrane protein which plays an impor-

tant role in the propagation of nerve impulse[45, 46]. In 1952, Hodgkin and Huxley

first proposed a mathematical model to explain the ionic mechanism underlying

the initiation and propagation of nerve impulse in the squid giant axon[47]. They

have calculated the potassium and sodium ion conductance by considering some

phenomenological equations which are still valid now. By using the voltage clamp

technique, they had experimentally determined the sodium and potassium channel

conductance. In the voltage clamp technique, ion flow across a cell membrane is

measured as electric current, while the membrane voltage is held under experimen-

tal control with a feedback circuit[47, 48]. Neher and Sakmann had advanced this

research field by inventing the patch-clamp technique which permits the possibility
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of measuring ionic current through the individual ion channels[5]. The experimen-

tal works by Skaugen et al.[49], Hille et al.[50] and Nossal et al.[51] demonstrated

that the individual ion channels are essentially stochastic entities that open and

close in a random way. The experimental and theoretical work by DeFelice and

co-workers produced a computer model to describe the noise properties of clusters

of ion channels in a small area of membrane[52]. Later Fox et al. had given a

stochastic description of the kinetics of many ion channels by considering the mas-

ter equation[53]. After isolation of individual sodium and potassium ion channels,

several workers have studied the single ion channel kinetics experimentally to un-

derstand how the ion channel works. To describe the single sodium or potassium

ion channel kinetics, several Markov models had been proposed. However, to se-

lect the appropriate Markov model from various possible schemes of ion channel

kinetics, several experiments are carried out[4, 48]. For example, Zagottaet al. had

performed an experiment for the selection of the best suited Markov model for the

description of potassium ion channel kinetics[48, 54, 55]. In recent years, Millonas

and co-workers have invented the non-equilibrium response spectroscopy for the se-

lection of the best Markov models of sodium and potassium ion channel kinetics at

non-equilibrium situation[56, 57]. In this technique they have used the oscillating

voltage protocol which drive the ion channel out of equilibrium. Therefore, it is now

possible to study the ion channel kinetics at the non-equilibrium condition which

can provide the information about the thermodynamic response properties such as

dynamical hysteresis at non-equilibrium steady state(NESS).

1.1 Scope of the thesis

The scope of studying the heterogeneous and complex reactions within the gen-

eral purview of kinetics and non-equilibrium thermodynamics to interpret both for

microscopic and macroscopic feature is vast. Therefore, in the present thesis we

have worked on some specific aspects of this broad topic theoretically by consider-

ing some important biological systems using relevant experimental parameters for

realistic applications. Consideration of stochastic approach becomes essential to

describe the fluctuation in small system as the fluctuation carries the information

about the structure and non-equilibrium behavior[58] and sometimes it becomes so

large that it can affect the overall dynamics of the system in an irreproducible way

[8, 9, 10, 59]. By incorporating the stochastic ideas, McQuarrie first systematically

explained the kinetics of the small chemically reacting systems containing a finite

number of molecules[8, 9, 10]. Based on some phenomenological assumptions, he

constructed the differential-difference equation or chemical master equation to de-

scribe the time evolution of the various first order and second order reactions[10].

However, sometimes it becomes too difficult to obtain the analytical solution of the
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master equation for complex reactions. To resolve this problem, in 1976 Gillespie

had developed a time-dependent Monte-Carlo simulation technique[14], known as

the stochastic simulation algorithm to obtain the information about the time evo-

lution of any spatially homogeneous mixture of molecular species which interact

through a specified set of coupled chemical reactions[14, 15]. The results obtained

from the simulation is equivalent to the chemical master equation.

Nowadays the reaction kinetics can be studied at the single molecule level by us-

ing the single molecule spectroscopy[60, 61] and single molecule imaging technique[1].

From single molecule experiments, it is now possible to track the diffusive motion

of an individual biological molecule[1, 2] and map out the probability distribution

and correlation as a function of time[62]. The microscopic detailing of any re-

action can also be obtained from the single molecule experiments. For example,

by using the wide field fluorescence microscope, it becomes possible to visualize

the activity and diffusion behavior of single interfacial enzyme, PLA2 in a hetero-

geneous lipid environment during active hydrolysis[1]. Furthermore, these exper-

iments help us to detect the molecular intermediates of a reaction and give the

information about the thermodynamic and kinetic behavior of the reacting sys-

tems. Single molecule enzyme kinetics is widely studied both theoretically and

experimentally due to its physiological importance in the regulation of the biolog-

ical reactions[60, 61, 63, 64]. At the single molecule level, an enzymatic reaction

becomes a stochastic event and in this experiment the waiting time for the com-

pletion of the enzymatic reaction is typically measured[60, 61]. The probability

density of these waiting times, can be obtained by recording the histogram of many

turnovers over a long period of time[61, 63]. Therefore, single-molecule kinetics

cannot be formulated in terms of enzyme concentration, but must be formulated in-

stead in terms of the probabilities for the enzyme to be in one of the possible states

in the reaction pathway[63, 64]. By the single-molecule enzymatic experiment, it

is now possible to distinguish the static and dynamic disorder of reaction rates,

which are not possible in the ensemble-averaged experiments[60]. Usually the single

molecule enzyme kinetics is studied at the chemiostatic condition where the concen-

trations of the substrate(s) and the product(s) remain approximately constant over

the course of the entire experiment[64, 65]. From the thermodynamic analysis, it

is observed that at the chemiostatic condition the reaction system goes to a non-

equilibrium steady state(NESS) instead of equilibrium [12, 13, 64, 66, 67]. Ge et

al.[68] and Qian et al.[39] also studied the non-equilibrium temporal cooperativity

to describe the signal transduction module of phosphorylation-dephosphorylation

cycle at NESS. Therefore, consideration of chemiostatic condition opens a new av-

enue to give the stochastic description of non-equilibrium cooperativity developed in

a oligomeric protein due to different substrate binding mechanism. In recent years,

single molecule force spectroscopy is used to manipulate the overall dynamics of the
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reactions[27, 58]. Using this spectroscopic technique an external mechanical force

is applied on a single molecule, which can change the thermodynamic stability of

this molecule by increasing or decreasing the activation free energy of the reaction

[27, 28, 29, 30, 58]. This external mechanical force can also drive the overall reaction

far away from equilibrium. Recently Gumpp et al. have carried out an experiment

at the single molecule level which demonstrated that the enzymatic activity can

also be monitored by applying an external mechanical force through atomic force

microscope(AFM)[6]. This experiment opens a new technique to study the direct

influence of force to manipulate the bio-catalytic reactions. Dynamics of a protein

molecule is usually studied at equilibrium but nowadays it becomes possible to study

the protein dynamics at non-equilibrium condition by using some time-dependent

external perturbation. For example, the kinetics of ion channel protein can be stud-

ied at non-equilibrium situation by applying an oscillating voltage protocol. This

technique is used in non-equilibrium response spectroscopy developed by Millonas

and co-workers[56, 57]. The oscillating voltage drives the ion channel out of equilib-

rium and resists the system to relax back to equilibrium [4, 56, 57, 69]. Using this

technique it is now possible to select the appropriate Markov model from various

possible schemes of ion channel kinetics. Therefore, this spectroscopic technique has

added another exciting dimension in the field of ion channel experiments. Recently,

Andersson et al.[70] have observed that using the oscillating voltage protocol, ion

channel conductance shows the hysteretic behavior which makes a new area in the

study of ion channel kinetics. With this background in mind we have made the fol-

lowing theoretical studies as our own contribution in the flow of the related research

and development.

At first, we have described the interfacial enzyme kinetics by formulating a theory

to explore the advancement of this reaction at the single enzyme level, which is

ultimately utilized to obtain the ensemble average macroscopic feature, the lag-

burst kinetics. We have provided a theory of the transition from the lag phase to

the burst phase kinetics. The theory has been developed by considering the gradual

development of electrostatic interaction among the positively charged enzyme and

the negatively charged product molecules, deposited on the phospholipid surface.

In the single trajectory analysis, it has been observed that the different diffusion

time scales of the enzyme over the fluid and product regions, are responsible for the

memory effect in the correlation of successive turnover events of the hopping mode.

This memory effect is again reflected on the non-Gaussian distribution of turnover

times on the macroscopic kinetics in the lag phase unlike the burst phase kinetics.

Next we have shown how an applied mechanical force affects an immobilized

oligomeric enzyme kinetics in a chemiostatic condition. The statistical characteris-

tics of random walk of the substrate molecules over a finite number of active sites of

the enzyme plays an important contributing factor in governing the overall rate and
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the non-equilibrium thermodynamic properties. The net rate of the reaction and the

corresponding entropy production are determined through a chemical master equa-

tion and the analytical results are supported by the simulation, based on the single

trajectory approach of Gillespie’s stochastic algorithm. This microscopic numerical

approach not only gives the macroscopic entropy production from the mean of the

distribution of entropy production which depends on the force but also a broadening

of the distribution by the applied mechanical force. In the non-equilibrium steady

state(NESS), both the mean and the variance of the distribution increases and then

saturates with the rise in applied force corresponding to the situation when the net

rate of product formation reaches a limiting value with an activationless transition.

It is also observed that at NESS, the net rate of the reaction is enhanced by more

than two orders of magnitude with the application of an external mechanical force

of the order of 10 − 100 pN.

Then we have systematically studied the cooperative binding of substrate molecules

on the active sites of a single oligomeric enzyme in a chemiostatic condition. The

average number of bound substrate and the net velocity of the enzyme catalyzed re-

action are studied by the formulation of master equation for the cooperative binding

classified here as spatial and temporal. We have estimated the entropy production

for the cooperative binding schemes based on single trajectory analysis using a ki-

netic Monte Carlo technique. It is found that the total as well as the medium entropy

production show the same generic diagnostic signature for detecting the cooperativ-

ity, usually characterized in terms of the net velocity of the reaction. This feature is

also found to be valid for the total entropy production rate at the non-equilibrium

steady state(NESS). We have introduced an index of cooperativity defined in terms

of the ratio of the surprisals or equivalently, the stochastic system entropy associ-

ated with the fully bound state of the cooperative and non-cooperative cases. The

criteria of cooperativity in terms of the cooperativity index is compared with that of

the Hill coefficient and gives a microscopic insight on the cooperative binding of sub-

strate on a single oligomeric enzyme which is usually characterized by macroscopic

reaction rate.

Finally, we have studied the non-equilibrium thermodynamic response of a voltage-

gated Shaker potassium ion channel using master equation approach. For a constant

external voltage, the system reaches equilibrium indicated by the vanishing total

entropy production rate, whereas for oscillating voltage the current and entropy

production rates show dynamic hysteretic behavior. Here we have shown quanti-

tatively that although the hysteresis loop area vanishes in low and high frequency

domains of the external voltage, they are thermodynamically distinguishable. At

very low frequency domain, system remains close to equilibrium whereas at high

frequency, it goes to a non-equilibrium steady state(NESS) associated with a finite

value of dissipation function. At NESS, the efficiency of the ion-conduction can also
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be related with the nonlinear dependence of the dissipation function on the power

of the external field. Another intriguing aspect is that at the high frequency limit,

the total entropy production rate oscillates at NESS with half of the time period of

the external voltage.

1.2 Plan of the Thesis

We have presented the contents of the thesis in the following chapters.

In Chapter-II we have given a brief overview regarding the stochastic description

of the kinetics as well as the thermodynamics of small chemical systems.

In Chapter-III the inhomogeneous interfacial enzyme kinetics is studied where

mechanical and chemical processes of the enzyme are involved. We have provided a

microscopic theory for single enzyme activity and consequently the ensemble average

kinetics for the reaction in bulk surface.

In Chapter-IV we have constructed the master equation for an oligomeric enzyme

and described how an applied mechanical force affects the enzyme kinetics in a

chemiostatic condition.

Chapter-V is devoted to analyze the cooperative binding of substrate molecules

on the active sites of a single oligomeric enzyme in a chemiostatic condition. Similar

to that of Hill coefficient, we have introduced an index of cooperativity at non-

equilibrium steady state.

In Chapter-VI we have studied the kinetic and non-equilibrium thermodynamic

response of a voltage-gated Shaker Potassium ion channel for oscillating voltage

protocol based on the master equation approach.
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Chapter 2

Overview on the stochastic
description of some small chemical
systems

Chemical kinetics is generally described by the conventional deterministic rate equa-

tions where the concentrations of the reacting species are calculated as a function of

time[8, 9]. However, the description of the kinetics by this approach needs serious

modification to accommodate the fluctuation of the concentrations of the reactants

of a small system containing a finite number of molecules[8, 9, 14, 15, 71, 72, 73].

In a small system, fluctuation carries the information about the structure and non-

equilibrium dynamics[58] and sometimes it can overwhelmly affect the main course

of the reaction[8, 59]. Stochastic approach provides an appropriate description

of the inherent statistical nature as well as the fluctuating dynamics of the reac-

tion system[8, 9, 13, 74]. An extreme limit of such consideration is the temporal

fluctuation of catalytic rate of an enzyme observed in single-molecule fluorescence

experiments[60, 61] which can not be described without consideration of probabilis-

tic approach[63].

Incorporation of the stochastic ideas into chemical kinetics[59, 71, 75, 76, 77] was

first successfully carried out by Kramers[75, 76], who treated a chemical reaction

as a Brownian motion of particles, whose rate of passage over a potential barrier

represents the rate of decomposition. After the work of Kramers, Delbruck[71]

and Renyi[77] studied a stochastic model of the auto-catalytic reaction, A→B and

showed that during the initial stages of reaction, the fluctuations in the number of

reactant molecules was of the order of the square root of the number of reactant

molecules. Singer discussed the application of a stochastic method to the study

of irreproducible reactions such as the oxidation of formic acid by potassium ni-

trate and the slow or explosive decomposition of some solids and some initial stages

of polymerization[59]. He concluded that in small system, large fluctuations in

the number of reactant species could be responsible for irreproducible reactions to-

11
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gether with the presence of impurities. In 1957, Bartholomay first explained the

uni-molecular reaction, A→B by considering the Markovian approach[73] and then

Ishida extended the Bartholomay’s method to a more general stochastic process,

having a time dependent rate constant[72]. However, McQuarrie championed the

stochastic approaches[8, 9, 10], popularly known as the chemical master equation,

to describe several first and second order reactions and also considered the effect of

initial conditions on the expectation value and variance of product formation.

In the master equation, time and the reactant-populations appear as independent

variables and it measures the probability of finding various molecular populations

at each instant of time[15]. Gillespie gave a rigorous derivation of the chemical mas-

ter equation for a chemically reacting gas-phase system which is kept well stirred

and in thermal equilibrium[78]. Later it was shown that the stochastic simula-

tion algorithm[14, 15] and the chemical master equation are equivalent[78, 79]. It

is shown that this simulation algorithm can be applicable as realizations of jump

Markov processes in arbitrary non-equilibrium situations[74]. For a closed system,

reactions occur at equilibrium condition where the change in Gibbs free energy and

the change of total entropy production becomes zero[66]. However, a chemical sys-

tem can be driven out of equilibrium by some continuous in-letting of reactants and

out-letting of products i.e., the system acts as a flow reactor[66, 64, 74]. In this

situation, the open chemically reacting system goes to the non-equilibrium steady

state(NESS) indicated by the non-zero value of total entropy production rate[66, 74].

Due to the constancy of the concentration of the reactants and products, the reac-

tant and product molecules behave like chemiostats and the differences of chemical

potentials between the chemiostats generate the fluxes of matter across the system

which mainly drive the system out of equilibrium[13].

Recent studies of non-equilibrium thermodynamics reveal that if a small chemical

system remains in far from equilibrium, the thermodynamic quantities like entropy

of the system becomes a fluctuating quantity and it follows some exact relations,

called the fluctuation theorems [13, 80, 81, 82]. The non-equilibrium thermodynamic

behavior of small chemical systems can be estimated by the use of such fluctuation

theorems[13, 81, 82]. These theorems also provide the insight regarding how the

macroscopic irreversibility appears in the system from the time-reversible micro-

scopic dynamics[83, 84, 85]. In the past 15 years, several fluctuation theorems(FT)

are proposed [83, 84, 85, 86, 87, 88] which changes our understanding about the

global properties of a small system that are not amenable from conventional ther-

modynamics.

Lay out of this chapter is as follows. In section 2.1 we have first discussed on

the McQuarrie’s description of the kinetics of small chemically reacting system. In

section 2.2, the birth-death master equations are introduced by considering some

chemical and biological processes. In section 2.3, we have briefly explained the
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single enzyme kinetics and single molecule diffusion in heterogeneous phases. Then

we have discussed the cooperativity in oligomeric enzyme in section 2.4 and voltage-

gated ion channel kinetics is introduced in section 2.5. In section 2.6 we have given

a microscopic description of a small chemical system and constructed the chemical

master equation from the basic probability theory. We have also briefly reported

on the Gillespie’s stochastic simulation algorithm in this section. Next in section

2.7, we have revised the non-equilibrium thermodynamics of small systems. We

have thoroughly discussed the Crooks fluctuation theorem and then described the

integral and detailed fluctuation theorems from it. We have extended this discussion

to describe the non-equilibrium thermodynamics of small chemical systems.

2.1 Kinetics of small system: McQuarrie’s de-

scription

Stochastic models for various types of first order and second order reaction kinetics

was first systematically described by McQuarrie for the small chemically reacting

systems containing a finite number of molecules[8, 9]. In these stochastic kinetic

models, the number of reacting species is considered as a integer-valued random

variable and the state of the system is described in terms of the population of reac-

tant molecules at a particular instant of time. The time evolution of the system is

described by a differential difference equation which is constructed on the basis of

some phenomenological assumptions. From the solution of the master equation, the

probability density function of the random variable is obtained from which various

moments may be calculated. The first moment gives the mean of the probabil-

ity density function which can also be obtained from the deterministic dynamics.

However, the second central moment i.e, variance is a measure of the statistical fluc-

tuations about the mean which is unobtainable from the conventional deterministic

approach. For clear understanding about how a stochastic model is constructed

for the chemical reactions, here we have considered three different uni-molecular

reactions: (I) A
k1→ B, (II)A

k1−−⇀↽−−
k-1

B (III) A
k1→ B, A

k2→ C.

To describe the uni-molecular reaction A
k1→ B, it is considered that at time t,

the number of A molecules present in the system is n(t) = n. The stochastic model

of this reaction is described by considering the following assumptions[8]: (I) The

probability of a transition, n→(n + 1) in the interval (t, t + ∆t) is k1n∆t + o(∆t),

where k1 is the rate constant and o(∆t)/∆t → 0 as ∆t → 0. (II) The probability

of a transition, n→(n − j), j > 1, in the interval (t, t + ∆t) is o(∆t) and the reverse

reaction occurs with probability zero. Using the following assumptions one can write

the differential-difference equation as

Pn(t + ∆t) = k1(n + 1)∆tP(n+1)(t) + (1 − k1n∆t)Pn(t) + o(∆t), (2.1)
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where Pn(t) is the probability of having n number of A molecules at time t. By the

standard procedure of expanding the probability Pn(t + ∆t), dividing by ∆t and

then taking the limit ∆t → 0, the master equation can be written as

dPn(t)

dt
= k1(n + 1)P(n+1)(t) − k1nPn(t). (2.2)

Using the generating function G(s, t) =
∑∞

n=0 Pn(t)s
n, the Eq.(2.2) becomes

∂G(s, t)

∂t
= k1(1 − s)(∂G(s, t)/∂s), (2.3)

and considering the initial condition G(s, 0) = sn0 , one obtains

G(s, t) =
[

1 + (s − 1)e−k1t
]n0

. (2.4)

Mean, 〈n(t)〉 and variance, 〈n2(t)〉 − 〈n(t)〉2 of n(t) can be calculated as

〈n(t)〉 = (∂G/∂s)s=1

,

〈n2(t)〉 − 〈n(t)〉2 = (∂2G/∂s2)s=1 + (∂G/∂s)s=1 − (∂G/∂s)2
s=1. (2.5)

Using the relations described in Eq.(2.5), one can calculate the mean and variance

of the corresponding reaction as

〈n(t)〉 = n0e
−k1t

and

〈n2(t)〉 − 〈n(t)〉2 = n0e
−k1t(1 − e−k1t), (2.6)

respectively. From the above expression(Eq.(2.6)), it is observed that the mean value

of the stochastic representation is consistent with the deterministic result. However,

this is true only for the uni-molecular reactions.

For the second reaction, A
k1−−⇀↽−−
k-1

B which is a reversible first order reaction, con-

sider again n(t) be the number of A molecules present at the reacting system at

time t and k1 and k−1 are the forward and backward rate constants, respectively.

The corresponding master equation for this reaction can be written as[8]

dPn(t)

dt
= k−1(nT − n + 1)P(n−1)(t) + k1(n + 1)P(n+1)(t)

−[k1n + k−1(nT − n)]Pn(t), (2.7)

where nT is the total number of A and B molecules. Using the generating function,

G(s, t), Eq.(2.7) becomes,

∂G(s, t)/∂t =
[

k1 + (k−1 − k1)s − k1s
2
]

(∂G(s, t)/∂s) + nTk−1(s − 1)G(s, t). (2.8)
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Solving the differential equation in Eq.(2.8) and using the relations described in

Eq.(2.5), one can obtain

〈n(t)〉 =
nT[k1e

−Kt + k−1]

(k1 + k−1)

and

〈n2(t)〉 − 〈n(t)〉2 = [nTγ/(1 + λ)] (1 − [γ/(1 + λ)]) , (2.9)

where λ = k1/k−1 and γ =
(

λe−Kt + 1
)

with K = (k1 + k−1).

For the third reaction, A
k1→ B, A

k2→ C, which is mainly the parallel first-order

reactions and it can be described by considering the two dimensional stochastic

process. If the number of A and B molecules at time t be n1(t) and n2(t), respectively,

then the master equation can be written as[8]

∂P(n1,n2)(t)

∂t
= k1(n1 + 1)P(n1+1,n2−1)(t) + k2(n1 + 1)P(n1+1,n2)(t)

+(1 − k1n1 − k2n1)P(n1,n2)(t). (2.10)

Now using the generating function, G(s, r, t) =
∑∞

n1=0

∑∞
n2=0 sn1rn2P(n1,n2)(t), we

obtain
∂G(s, r, t)

∂t
= (k1r + k2 − Ks)

(

∂G(s, r, t)

∂s

)

, (2.11)

where K = k1 + k2. Considering the initial condition sn0
1rn0

2 , one obtains F(s, r, t)

from the above equation(Eq.(2.11))

F(s, r, t) =

(

[k1r + k2 − (k1r + k2 − Ks)e−Kt]

K

)n0
1

rn0
2 . (2.12)

Using F(s, r, t) one can obtain the value of mean and variance of n1(t) and n2(t) as

〈n1(t)〉 = n0
1e

−Kt,

〈n2
1(t)〉 − 〈n1(t)〉

2 = n0
1e

−Kt(1 − e−Kt),

〈n2(t)〉 = n0
2 + (k1n

0
1/K)(1 − e−Kt),

and

〈n2
2(t)〉 − 〈n2(t)〉

2 = (k1n
0
1/K)(1 − e−Kt)(1 − [k1(1 − e−Kt)/K]). (2.13)

Here n0
1 and n0

2 are the initial values of A and B, respectively. The stochastic models

for second order reactions can not be solved exactly in many cases. For this reason,

some approximate methods are used to determine the first and second moments

without solving the probability generating function.
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To describe such approximate method one can consider a second order reaction[9],

2A
k
→ B, whose probability rate equation is

dPn(t)

dt
=

1

2
k(n + 2)(n + 1)P(n+2)(t) −

1

2
kn(n − 1)Pn(t), (2.14)

where Pn(t) = Prob{n(t) = n, n = 0, 2, 4, ...., n0}. Multiplication of Eq.(2.14) by n

and n2, respectively, and summing over n, gives

d〈n〉

dt
= −k〈n2〉 + k〈n〉, (2.15)

and
d〈n2〉

dt
= −2k〈n3〉 + 4k〈n2〉 − 2k〈n〉. (2.16)

Now taking the assumption that the higher moments as a product of the lower

moments, e.g., 〈n3〉 = 〈n2〉〈n〉 and 〈n2〉 = 〈n〉2 we get

〈n〉 =
n0

n0 + (1 − n0)exp[−kt]
, (2.17)

where n0 is the initial population of A molecules. The assumption, 〈n2〉 = 〈n〉2 is

equivalent to reducing the stochastic model to deterministic model. Using 〈n3〉 =

〈n2〉〈n〉 and the value of 〈n〉 in Eq.(2.17), one obtains

〈n2〉 = 〈n〉2
[

2

3
{(n0 − 1)/n0}(e

2kt − e−kt) + 1

]

. (2.18)

Therefore, the variance, 〈n2〉 − 〈n〉2 can be calculated as

〈n2〉 − 〈n〉2 =

[

2

3
{(n0 − 1)/n0}(e

2kt − e−kt)

]

. (2.19)

2.2 Birth-death master equation

Here we have described the birth-death processes by stochastic master equation.

The name birth-death comes from the modeling of the dynamics of animal or hu-

man populations in which individuals are born, or die. The birth-death processes are

generally described by the master equation where it is considered that a finite num-

ber of reactant molecules are created (born) or destroyed (die) in a given event[89].

If a reacting species, say X has n in number at time t, the master equation can be

written as

dPn(t)

dt
= w+(n− 1)P(n−1)(t) + w−(n + 1)P(n+1)(t)− [w+(n) + w−(n)]Pn(t), (2.20)

where, w+(n) and w−(n) are the transition probabilities from state, n → n + 1

and n → n − 1, respectively. The stationary solution of the corresponding master
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equation in Eq.(2.20) can be obtained by considering dPn(t)
dt

= 0. The stationary

solution can be written as

Pst
n = Pst

(0)

z=n
∏

z=1

w+(z − 1)

w−(z)
, (2.21)

where Pst
0 is the steady state probability distribution for n = 0. To discuss the birth-

death process, here we have considered Lotka-Volterra process, Brusselator reaction

and the Schlogl model of bistable chemical reaction.

2.2.1 Lotka-Volterra reaction:

. The Lotka-Volterra model is composed of a set of coupled, auto-catalytic processes

which was first observed by Lotka in 1920. Several years later Volterra independently

described this process by formulating a mathematical model. The reaction scheme

of Lotka-Volterra model is proposed for the dynamical populations of prey and

predator species. It can be written as[14]

X + Y1
k1→ 2Y1, (2.22)

Y1 + Y2
k2→ 2Y2, (2.23)

Y2
k3→ Z. (2.24)

The deterministic rate equations are

dY1

dt
= k1XY1 − k2Y1Y2,

and
dY2

dt
= k2Y1Y2 − k3Y2. (2.25)

The reaction in Eq.(2.23) describes how a certain predator species Y2 reproduces by

feeding on a certain prey species Y1. However, from Eq.(2.22) it is observed that the

prey species Y1 reproduces by feeding on a certain foodstuff X, which is assumed

here to be depleted insignificant amount. The isomerization in Eq.(2.24) describes

the eventual death of predator species, Y2 due to some natural causes.

The corresponding master equation of this reaction is

∂P(Y1,Y2)(t)

∂t
= k1X(Y1 − 1)P(Y1−1,Y2)(t) + k2(Y1 + 1)(Y2 − 1)P(Y1+1,Y2−1)(t)

+k3(Y2 + 1)P(Y1,Y2+1)(t) − [k1XY1 + k2Y1Y2 + k3Y2] P(Y1,Y2)(t) (2.26)

The solution of the master equation is not possible in analytical technique, however,

from simulation we obtain the variation of Y1 with Y2 which is depicted in Fig.(2.1).
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Figure 2.1: The intermediate species, Y1 and Y2 are oscillating in the Y1Y2 plane.
Initial populations of Y1 and Y2 are 1000, 1000, respectively. The value of the rate
constants are k1X = 10.0, k2 = 0.01 and k3 = 10.0.

From Fig.(2.1), it is observed that the intermediate species Y1 and Y2 are oscil-

lating in time. However, this oscillation is not stable and area depends on the initial

condition.

2.2.2 Brusselator reaction

Brusselator is a type of auto-catalytic, oscillating chemical reaction which was pro-

posed by Prigogine and Lefevre in 1967 at Brussels. The kinetic scheme of this

reaction is[14]

X1
k1→ Y1, (2.27)

X2 + Y1
k2→ Y2 + Z1, (2.28)

2Y1 + Y2
k3→ 3Y1, (2.29)

Y1
k4→ Z2. (2.30)

In this reaction, the population of the reactants, X1 and X2 are assumed to be

depleted insignificant amount. The intermediate substances Y1 and Y2 are connected

with one another via a trimolecular reaction (2.29), which ensures the existence of an

oscillatory regime. The deterministic rate equations for this reaction can be written
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Figure 2.2: Y1 and Y2 oscillate around a well defined, closed, stable path in the
Y1Y2 plane. Initial population of Y1 and Y2 are 1000, 2000, respectively. The value
of the rate constants are k1X1 = 5000.0, k2X2 = 50.0, k3 = 0.00005 and k4 = 5.0

as
dY1

dt
= k1X1 − k2X2Y1 + (k3/2)Y2

1Y2 − k4Y1,

and
dY2

dt
= k2X2Y1 − (k3/2)Y2

1Y2. (2.31)

The description of the time evolution of this reaction can be cast into a master

equation which can be written as

∂P(Y1,Y2)(t)

∂t
= k1X1P(Y1−1,Y2)(t) + k2X2(Y1 + 1)P(Y1+1,Y2−1)(t)

+k3

(

1

2
(Y1 − 1)(Y1 − 2)

)

(Y2 + 1)P(Y1−1,Y2+1)(t) + k4(Y1 + 1)P(Y1+1,Y2)(t)

−

[

k1X1 + k2X2Y1 + k3

(

1

2
Y1(Y1 − 1)

)

Y2 + k4Y1

]

P(Y1,Y2). (2.32)

The solution of the master equation in Eq.(2.32) is not possible analytically, however,

the oscillation of the intermediate substances, Y1 and Y2 can be obtained from

simulation which is depicted in Fig.(2.2). From Fig.(2.2), it is observed that the

system will eventually wind up orbiting around a well defined, closed, stable path

in the Y1Y2 plane which does not depend on the initial state of the system. So this

reaction is considered as an example of the ‘limit cycle’ chemical oscillator.
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2.2.3 Schlogl model of bistable chemical reaction

Schlogl model is an example of a chemical reaction system that exhibits bistability.

The scheme of the reaction is[11]

A + 2 X
k1−⇀↽−
k2

3 X, (2.33)

B
k3−⇀↽−
k4

X, (2.34)

where the concentration of the reactant A and B are held constant. The deterministic

rate equation of this reaction is

dX

dt
= k1AX2 − k2X

3 + k3B − k4X, (2.35)

which is a first order, nonlinear ordinary differential equation. The stochastic de-

0 1 2 3 4
X

-4

-2

0

2

4

dX dt X

X X
-

0 +

Figure 2.3: dX/dt is plotted as a function of X by taking the rate parameters,
k1 = 3.0, k2 = 0.6, k3 = 0.25 and k4 = 2.95. The values of A and B are A = 1 and
B = 1, respectively. The plot show the bistability of the system and generated by
solving Eq.(2.35).

scription of this reaction can be given by constructing the master equation for this

reaction and that can be written as

dPx(t)

dt
= k1A

(

1

2
(x − 1)(x − 2)

)

P(x−1)(t)+k2

(

1

3
(x + 1)x(x − 1)

)

P(x+1)(t)+k3BP(x−1)(t)+

k4(x+1)P(x+1)(t)−

[

k1A

(

1

2
x(x − 1)

)

+ k2

(

1

3
x(x − 1)(x − 2)

)

+ k3B + k4x

]

Px(t),

(2.36)
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where Px(t) is the probability of having x number of X molecules at time t.

We have numerically solved the Eq.(2.35) and plotted dX
dt

as a function of X in

the Fig.(2.3). In this figure X− and X+ represent two stable steady states and X0

is an unstable steady state. The system will always tend towards one of the two

stable fixed points, X− and X+, depending on the initial condition of the reaction.

The result of the simulation of master equation is not shown here.

2.3 Study of reaction kinetics at single molecule

level

In the previous section, we have given the stochastic description of the reaction

systems having finite number of reactant molecules by the master equation. Here

we have discussed the reaction kinetics at the single molecule level which can be

studied experimentally by single-molecule spectroscopy[60, 61] and single molecule

imaging technique[1]. To understand how single molecule and ensemble kinetics are

reconciled and what new informations are obtained from single molecule data, a

stochastic description of the reaction kinetics is essential as the reactions become

stochastic in nature[60, 61, 63]. Here we have discussed mainly the single enzyme

kinetics and single molecule detection of translational diffusion.

2.3.1 Single enzyme kinetics: waiting time distribution

The kinetic scheme of a single enzyme molecule can be written as [60, 61, 63]

E + S
k1

′

−−⇀↽−−
k
−1

ES
k2→ E0 + P E0 δ

→ E, (2.37)

where a substrate, S binds reversibly with a conformation of an enzyme E to form

an enzyme-substrate complex, ES which undergoes uni-molecular decomposition to

form a product P and E0. The intermediate conformation of enzyme, E0 immediately

goes to the original conformation of enzyme, E. The corresponding probabilistic rate

equation can be written as

dPE(t)

dt
= −k1PE(t) + k−1PES(t), (2.38)

dPES(t)

dt
= k1PE(t) − (k−1 + k2)PES(t), (2.39)

and
dPE0(t)

dt
= k2PES(t), (2.40)

where k1 = k
′

1[S] is the pseudo first-order rate constant. Usually in the single

molecule enzymatic experiments, the waiting time distribution, f(t) is measured for
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one turnover and experimentally it is obtained by recording the histogram of many

turnovers[63]. Theoretically f(t) is calculated as

f(t) =
dPE0(t)

dt
= k2PES(t). (2.41)

From the solution of Eq.(2.38) to Eq.(2.40) and using the above relation for f(t) in

Eq.(2.41), it can be easily shown that

f(t) =
k1k2

2A

[

e−(B−A)t − e−(B+A)t
]

, (2.42)

where B = (k1 + k−1 + k2)/2 and A =
√

(k1 + k−1 + k2)2/4 − (k1k2). The mean

waiting time for the reaction, 〈t〉 can be obtained from the waiting time distribution

as, 〈t〉 =
∫ ∞

0
tf(t)dt and the inverse of 〈t〉 gives the traditional Michaelis-Menten

equation
1

〈t〉
=

k2[S]

[S] + KM

, (2.43)

with the Michaelis-Menten constant, KM = k−1+k2

k
′

1

. Therefore, the waiting time

distribution, f(t) on the one hand gives the ensemble average kinetic result and on

the other hand it provides the crucial information on dynamic disorder. In the

presence of dynamic disorder, f(t) shows a highly stretched multi-exponential decay

at high substrate concentrations and a mono-exponential decay at low substrate

concentrations [63].

Sometimes the single molecule enzyme kinetic reaction is carried out at chemio-

static condition where the substrate and product concentrations are maintained at

a constant value throughout the experiment[64, 65]. Therefore, the reaction scheme

described in Eq.(2.37) can be written as

E + S
k1

′

−−⇀↽−−
k
−1

ES
k2−−⇀↽−−

k
′

−2

E + P. (2.44)

The above reaction scheme in Eq.(2.44)can be reduced to

E
λ
−⇀↽−
µ

ES, (2.45)

where λ = (k1 + k−2) and µ = (k−1 + k2). The pseudo first order rate constants,

k1 and k−2 are k1 = k
′

1[S]) and k−2 = k
′

−2[P]), respectively. The probabilistic rate

equations can be written as

dPE(t)

dt
= −(k1 + k−2)PE + (k−1 + k2)PES, (2.46)

and
dPES(t)

dt
= (k1 + k−2)PE − (k−1 + k2)PES. (2.47)
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The steady state probabilities PE and PES are obtained from the solution of the rate

equations in Eq.(2.46) and Eq.(2.47) as

PE =
λ

(λ + µ)
, PES =

µ

(λ + µ)
. (2.48)

The net velocity of the reaction can be calculated as

vnet = k2PES − k−2PE =
(k2λ) − (k−2µ)

λ + µ
. (2.49)

For k−2 = 0 then we obtain the Michaelis-Menten equation described in Eq.(2.43).

2.3.2 Tracking of heterogeneous diffusion: Single molecule
study

Using single molecule imaging technique[1], one can follow the diffusive motion of

individual Brownian particle and map out the probability distribution and corre-

lation as a function of time. In the homogeneous environment, the diffusion of a

Brownian particle follows Gaussian distribution. However, in the heterogeneous en-

vironments, a Brownian particle travels through distinct diffusion areas of various

sizes and geometrical arrangements and the distribution becomes non-Gaussian[62].
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Figure 2.4: A schematic diagram of the two-state diffusive model for heterogeneous
diffusion

To describe the heterogeneity developed in the system due to diffusion, we have

considered here a model of diffusion of a Brownian particle in two different regions

having diffusion constants D1 and D2. The rate from first to second region is η1,

and from D2 to D1 is η2, where the the diffusion rate of the particle is Poissonian.

The two state heterogeneous diffusion is described here by the reaction-diffusion

equation in Fourier space,

Ṗ1(t, k) = −(η1 + k2D1)P1(t, k) + η2P2(t, k), (2.50)
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Ṗ2(t, k) = −(η2 + k2D2)P2(t, k) + η1P1(t, k). (2.51)

Here Pi(t, k) is the probability of remaining the particle with wave vector, k at time

t in the region i where (i = 1, 2). Using the Laplace transformation, the above

equations (2.50-2.51) can be written as

(

P1(s, k)
P2(s, k)

)

=
1

Det(s, k)

(

s + k2D2 + η2 η1

η2 s + k2D1 + η1

)

×

(

P1(0, k)
P2(0, k)

)

,

(2.52)

where the determinant is Det(s, k) = (s + k2D1 + η1)(s + k2D2 + η2) − η1η2. The

total probability distribution for the Brownian particle is P(s, k) = P1(s, k)+P2(s, k)

with the equilibrium distributions, P1(0) = η2/(η1 + η2) and P2(0) = η1/(η1 + η2).

If η1 = η2 = η, the Fourier transform of the probability distribution becomes

P(t, k) = exp
[

−
(

k2D0 + η
)

t
]

×
[

cosh(∆t) +
η

∆
sinh(∆t)

]

P(0, k). (2.53)

Here D0 = (D1 +D2)/2 and ∆2 = k4ξ2 +η2 where ξ = (D1−D2)/2. The distribution

in Eq.(2.53) tends to the usual diffusion equation P(t, k) = e−k2DtP(0, k) in the

limit of ξ → 0 or η → ∞. To quantify the distribution, one can measure the time

dependent spatial moment, In(t) = 〈|r(t)−r(0)|n〉, where r(t) and r(0) is the position

of the Brownian particle at initial time t = 0 and at time t[62, 90]. For a Gaussian

distribution the higher order moments, say I4(t) is determined by the second moment

I2(t), as I4(t) = 3I22(t). Therefore, the deviation from the Gaussian distribution can

be measured as J(t) = I4(t) − 3I2(t). To scale J(t), the non-Gaussian indicator is

defined as[62]

σ(t) =
J(t)

3I22(t)
. (2.54)

The mean square displacement of a diffusive Brownian particle in the heterogeneous

environment obeys the Einstein relation. So the second moment can be written as

I2(t) = 2〈D〉t, where D is the effective diffusion constant expressed as an inhomo-

geneous average. Consequently, in the short time limit I4(t) can be expressed as

3〈(2Dt)2〉, where 〈D2〉 denotes an inhomogeneous average. The initial value of σ(t)

is given explicitly as σ(0) = 〈δD2〉
〈D〉2

, with 〈δD2〉 = 〈D2〉−〈D〉2. Thus the non-Gaussian

indicator[62] can be normalized as

g(t) =
σ(t)

σ(0)
=

〈D〉2

〈δD2〉

J(t)

3I22(t)
, (2.55)

where g(t) is independent of the diffusion constant. In the two-state Poisson kinetics,

g(t) can be calculated from the probability distribution, P(t, k) in Eq.(2.53) as

g(t) =
ηt − e−ηtsinh(ηt)

(ηt)2
. (2.56)
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To describe the diffusion process of a single Brownian particle it is essential to

measure the square displacement of the particle at two different times which can be

calculated in terms of the joint moment function[62]

I(t1, τ, t2) = 〈|r(t1) − r(0)|2|r(τ + t1 + t2) − r(τ + t1)|
2〉, (2.57)

where τ is the time separation of the two different measurements at t1 and t2.

From this joint moment function, I(t1, τ, t2) the memory effect developed in the

system can be described. Without the memory effect, the joint moment function

becomes, I(t1, τ, t2) = I2(t1)I2(t2), with I2(t) = 〈|r(t) − r(0)|2〉. Therefore, the

memory effect can be quantified by the normalized correlation function of the square

displacement[62] as

f(t, τ) =
I(t1, τ, t2) − [I2(t)]

2

I(t, 0, t) − [I2(t)]2
. (2.58)

Using the above relation in Eq.(2.58), the normalized correlation function, f(t, τ) for

the two state Poisson process, becomes

f(t, τ) = e−2τη. (2.59)

From the above discussion, one can get an idea about the nature of the diffusion

process of a single Brownian particle, i.e, to know whether the diffusion is homo-

geneous or non-homogeneous. In the non-homogeneous diffusive process a mem-

ory effect is developed in the system which can be characterized by measuring the

normalized non-Gaussian indicator, g(t) and the correlation function f(t, τ). This

memory effect is developed due to diffusion in the inhomogeneous environment with

an effective fluctuating diffusion coefficient.

2.4 Cooperativity in enzyme kinetics

In enzymology, the cooperativity phenomenon is mainly displayed by the oligomeric

enzymes consisting two or more sub-units usually linked to each other by non-

covalent interactions. Possibility of interaction between the sub-units during the

substrate binding process can give rise to different cooperative phenomena [34, 40,

91, 92]. Positive cooperativity is said to occur when the binding of one substrate

molecule with a sub-unit increases the affinity of further attachment of the substrate

to another subunit [34, 40, 93]. An example of positive cooperativity is the binding

of oxygen to hemoglobin which has a characteristic of sigmoidal shape. From experi-

ment it is observed that when an oxygen molecule binds to a sub-unit of hemoglobin,

the oxygen affinity increases, allowing the second molecule to bind more easily, and

the third and fourth even more easily i.e., the oxygen affinity of 3-oxy-hemoglobin

is 300 times greater than that of deoxy-hemoglobin. In the case of negative coop-

erativity, attachment of a substrate molecule to one subunit decreases the tendency
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of further attachment of the substrate molecules to other subunits. For the non-

cooperative case, substrate molecules independently bind to the sub-units of the

oligomeric enzyme and the enzyme follows the Michaelis-Menten kinetics.

In 1910, A.V. Hill first described the sigmoidal binding curve of oxygen of

hemoglobin by taking the assumption that all ligand molecules would have to bind

to the oligomeric protein simultaneously and reach saturation in a single step. Ac-

cording to the Hill’s description, if an oligomeric protein, E consists of n number of

sub-units, the n number of ligands simultaneously bind with that oligomeric enzyme

and form the complex, ELn. The corresponding binding scheme can be written as

E + nL −⇀↽− ELn,

where Kb is the equilibrium binding constant and can be defined as

Kb =
[ELn]

[E][L]n
. (2.60)

Now taking the logarithm on both sides, we get

ln Kb + n ln [L] = ln
[ELn]

[E]
= ln

(

[ELn]

[E0] − [ELn]

)

= ln

(

Y

1 − Y

)

, (2.61)

where, Y is the fractional saturation of the oligomeric enzyme, i.e, Y = [ELn]
[E0

with

[E0] = [E] + [ELn]. The above relation described in Eq.(2.61) is known as Hill equa-

tion. The plot of ln
(

Y
1−Y

)

versus ln [L] be a straight line with slope n and intercept,

ln Kb. Such a graph is called a Hill plot, and its experimentally determined slope

is known as the Hill coefficient, generally indicated by the symbol h. Experimen-

tally the Hill coefficient is obtained by determining the fractional saturation, Y at

various ligand concentrations [L], constructing the Hill plot (ln( Y
1−Y)

vs. ln[L]) and

then finding the slope at the half-saturation point, Y = 0.5 or at a point where the

slope deviates maximum from unity. For positive and negative cooperative cases,

the Hill coefficient, h becomes greater than or less than one, respectively, whereas

the non-cooperative case is characterized with Hill coefficient equal to one.

G.S. Adair first developed an equation to describe the sigmoidal binding curve

of the oxygen of hemoglobin by considering all individual binding steps[36]. The

general binding scheme of Adair can be written as

E
k1

(0)

−−−⇀↽−−−
k2

(1)

ES1

k1
(1)

−−−⇀↽−−−
k2

(2)

......
k1

(j−1)

−−−−⇀↽−−−−
k2

(j)

ESj

k1
(j)

−−−−⇀↽−−−−
k2

(j+1)

......
k1

(n−2)

−−−−⇀↽−−−−
k2

(n−1)

ESn−1

k1
(n−1)

−−−−⇀↽−−−−
K2

(n)

ESn. (2.62)

Here ESj represents the conformational state of the oligomeric enzyme in which j

number of subunits are occupied by the ligands. k1
(j−1) and k2

(j) are designated as

the formation and dissociation rate constants in the j-th reaction step, respectively.
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The fractional saturation, Y is simply expressed as

Y =

∑nT

n=0 n

(

nT

n

)

∏n−1
j=0 K(j)

∑nT

n=0

(

nT

n

)

∏n−1
j=0 K(j)

, (2.63)

where K(j) = k
(j)
1 /k

(j+1)
2 , is the equilibrium constant for the j-th binding step.

By the Adair scheme, positive, negative and no cooperativity phenomenon can

be described very nicely. If the step-wise equilibrium binding constant increases,

positive cooperativity is observed, whereas, for the reverse case, an oligomeric pro-

tein shows the negative cooperativity. If the step-wise binding constants remain the

same then no cooperativity phenomenon is developed. These types of cooperativity

based on the affinity of the substrate binding belong to the class of allosteric co-

operativity which is mainly described by the concerted or sequential models. The

concerted model of allostery was proposed by Monod, Wyman and Changeux which

is sometimes referred to as the symmetrical model or MWC model[37]. In this

model each sub-unit or active site can exist in two conformational states, T and R

states, where the R-state predominates in the protein-ligand complexes. The model

is based on the assumption that in a particular protein molecule, all of the sub-units

must remain either in the R or T conformational state. The two conformational

states of the protein are in equilibrium in the absence of ligand but the equilib-

rium is disturbed when a ligand binds to a sub-unit of the protein. The sequential

model was proposed by Koshland, Nemethy and Filmer(KNF) [38] which dictates

that the ligands bind via an induced fit protocol. The basic assumptions of this

model are: (a) the two conformational states T and R are available to each subunit,

(b) only the subunit to which the ligand is bound changes its conformation and

(c) the ligand-induced conformational change in one subunit alters its interactions

with neighboring subunits[38, 91]. These two allosteric models are constructed by

considering the equilibrium condition, however, in living cell most of the reactions

occur in non-equilibrium condition which is developed due to the imbalanced chem-

ical reactions and the presence of chemiostats. So to describe the non-equilibrium

cooperativity phenomenon, it becomes essential to modify these two equilibrium al-

losteric models. In chapter five, we have thoroughly discussed the non-equilibrium

cooperativity.

2.5 Voltage-gated ion channel kinetics:

In neuro-physiology, voltage-gated ion channels, mainly sodium and potassium chan-

nels play an important role in generation and propagation of action potential(nerve

impulse) by controlling the voltage gradient across the plasma membrane of nerve
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cells, by allowing the flow of ions down their electrochemical gradient[45, 46]. Hodgkin

and Huxley made the first intracellular recording of an action potential and devel-

oped a voltage-clamp circuit to measure the ionic currents from squid axon. How-

ever, their most remarkable achievement was the proposition of a mathematical

model to explain the ionic mechanisms underlying the initiation and propagation of

action potentials in the squid giant axon [47]. The Hodgkin-Huxley theory of the

action potential is still considered as the most significant conceptual breakthrough in

neuro-science and they received the Nobel Prize in Physiology or Medicine in 1963.

In this model the lipid bilayer is considered as a capacitor (Cm) and the current can

be carried through the membrane either by charging the membrane capacity or by

movement of ions through the ion channel[47]. Therefore, the total membrane cur-

rent, IMI can be written as the summation of capacity current, IC and ionic current,

Ii as

IMI = IC + Ii. (2.64)

Here IC = Cm
dV
dt

where Cm is the specific membrane capacitance per unit area and

V is the membrane potential. The ionic current is divided into components carried

by sodium and potassium ions (INa) and (IK), and a small ‘leakage current’, (Il)

made up by chloride and other ions. Therefore, the ionic current is calculated as

Ii = INa + IK + Il. (2.65)

The individual ionic currents are calculated according to the relations

INa = gNa(V − ENa),

IK = gK(V − EK),

and

Il = gl(V − El), (2.66)

where ENa, EK and El are the sodium, potassium and leakage reversal potential,

respectively[47, 53]. The sodium and potassium ion conductance are calculated as

gNa = ḡNaNNah m3

and

gK = ḡKNKn4, (2.67)

where ḡNa and ḡK are the sodium and potassium conductance per channel. NNa and

NK are the sodium and potassium channel density per unit area. n,h and m are the

gate parameters which satisfy the equation as [47],

dn

dt
= αn(1 − n) − βnn, (2.68)
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dm

dt
= αm(1 − m) − βmm, (2.69)

and
dh

dt
= αh(1 − h) − βhh. (2.70)

Here αJ and βJ with J = n, h, m are gate opening and closing rates with dimension

time−1 and depend on the membrane potential, V. Solving the Eq.(2.68), Eq.(2.69)

and Eq.(2.70) we obtain

n = n∞ − (n∞ − n0)exp(−t/τn), (2.71)

m = m∞ − (m∞ − m0)exp(−t/τm), (2.72)

and

h = h∞ − (h∞ − h0)exp(−t/τh), (2.73)

where J0 and J∞ are the initial and final values of j where j = n, m, h. The values

J0 and J∞ are determined as J0 = αJ0/(αJ0 + βJ0). J∞ = αJ/(αJ + βJ) and τJ =

1/(αJ + βJ), where J = n, h, m. Here τJ is the characteristic relaxation time. The

time-dependence of potassium and sodium conductance can be calculated as[47]

gK = (gK∞
)1/4 − [(gK∞

)1/4 − (gK0)
1/4]exp(−t/τn)

4, (2.74)

and

gNa = g
′

Na[1 − exp(−t/τm)]3exp(−t/τh), (2.75)

where g
′

Na = ḡNam
3
∞h0. gK0and gK∞

are the values of initial and final potassium

conductance. The time-dependent values of gK and gNa obtained from Eq.(2.74)

and Eq.(2.75) exactly match with the conductance values obtained from the Voltage-

clamp experiment. However, the conductance gl is considered as constant.

The propagation of action potential can be described by substituting the value of

membrane current for unit length, IMC = a
2r

∂2V
∂x2 in Eq.(2.64), where a is the radious

of the nerve fibre, r is the specific resistance of the axoplasam, x is distance along

the fibre and V is the membrane potential[47]. Thus one can write

a

2r

∂2V

∂x2
= Cm

dV

dt
+ gNa(V − ENa) + gK(V − EK) + gl(V − El). (2.76)

Eq.(2.76) is a partial differential equation, and it is not practicable to solve it as it

stands. During steady propagation, the curve of V against time at any one position

is similar in shape to that of V against distance at any one time, and it follows that

∂2V

∂x2
=

1

θ2

∂2V

∂t2
,

where θ is the velocity of conduction. Therefore, Eq.(2.76) can be written as

a

2rθ2

∂2V

∂t2
= Cm

dV

dt
+ gNa(V − ENa) + gK(V − EK) + gl(V − El). (2.77)
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This is an ordinary differential equation and can be solved numerically. This equa-

tion describes how the action potential wave propagates with time.

In 1976 Neher and Sakmann developed the patch clamp technique by which they

have measured the ionic current through an individual ion channel[5]. This advance-

ment has revolutionized both experimental and theoretical approaches and for this

work they have received the Nobel Prize in Physiology or Medicine in 1991. From

the study of single ion channel, it becomes clear that individual ion channels are

essentially stochastic entities that open and close in a random fashion. From the

single ion channel experiments, it is now possible to study the kinetics of individual

ion channels and determine accurately the model parameters of a channel. MacKin-

non and colleagues have determined the three-dimensional molecular structure of a

potassium ion channel by utilizing the X-ray crystallography[94] and explained the

exact mechanism of the selectivity of potassium ion channel. For this work he won

the Nobel prize in chemistry in 2003. In chapter six, we have thoroughly discussed

the kinetics as well as thermodynamics of a single potassium ion channel.

2.6 Microscopic description of small chemical sys-

tems: Chemical master equation

For the microscopic description, a chemical system is considered having m different

types of chemical species {S1, S2, ....., Sm}, which interact through M chemical re-

actions {R1, R2, ........, RM}. Each reaction, Rµ(µ = 1, 2, .....M) describes a distinct

physical event which happens instantaneously[14, 15, 78, 79]. The system is con-

fined to a constant volume Ω and is in thermal (but not in chemical) equilibrium

at some constant temperature T. The number of molecules of species Si in the

system at time t is ni(t) and the corresponding molecular populations state vector

is n̄(t) = (n1(t), n2(t), ...., nm(t)), given that the system was in state n̄(t0) at some

initial time t0.

The change in the population state vector is induced by a single occurrence of

a particular reaction, Rµ. Mathematically the reaction, Rµ is characterized by two

quantities. The first is the state change vector, νµ = (ν1µ, ....., νmµ) where νiµ is the

change in the Si molecular population due to occurrence of the Rµ reaction. So if

the system is in state, n̄(t) = n at time t and one Rµ reaction occurs, the system

immediately jumps to state n + νµ. The other quantity is the propensity function,

aµ where[14, 15, 78, 79] aµ(n)dt ≡ cµhµ(n)dt is the probability that a particular

reaction Rµ will occur in (t, t + dt) in Ω given that the system is in state n at time

t. Here cµ is the specific probability rate constant of the reaction Rµ and hµ(n)

indicates the number of distinct Rµ reactant combinations available in the state n.

Thus, if Rµ has the form S1 + S2→products, then we will have hµ(n) = n1(t)n2(t)

and if Rµ is 2S1→products, the form of hµ(n) will be hµ(n) = 1
2
n1(t)(n1(t)−1). The
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specific probability rate constant, cµ is related with the traditional deterministic rate

constant, kµ as cµ = kµ/Ω
(j−1), where j indicates the number of reactant molecules

participating in the µ-th reaction. So for the reaction 2S1→products, the propensity

function aµ will be aµ(n) = 1
2
[cµn1(t)(n1(t)− 1)] = 1

2
[kµn1(t)(n1(t)− 1)/Ω]. Usually

the propensity function is independent of time, however, if the specific probability

rate constant, cµ is time-dependent then the propensity function also becomes a

function of time.

2.6.1 Chemical master equation

In the master equation[11], time and the reactant-populations appear as independent

variables and the function which satisfies the equation measures the probability of

finding various molecular populations at each instant of time[15]. The chemical

master equation can be constructed from the microscopic point of view as follows[15].

Let at time t system remains in the state n = (n1(t), n2(t), ....., nm(t)) and the

corresponding probability of remaining in the state is Pn(t). We want to find out

the probability, Pn(t + dt) i.e., the probability of remaining the system in the state

n at time t + dt. During this time interval dt, three events can occur which are

independent and mutually exclusive to each others[78]. The first event is that one

Rµ(µ = 1, 2, ..., M) reaction occurs in the time interval dt and due to occurrence of

the first event, the system goes from the state n− νµ to n state at time t to t + dt

[78]. The second event is that no reaction occurs during this time interval and if no

reaction occurs in dt, system remains in the state n from time t to t + dt [78]. The

last event can be about more than one reaction occur in this time interval[78]. First

calculate the probability of occurring the first event, P(I). By applying the laws of

probability to the fundamental premise [78], it can be easily calculated as[14, 15, 78],

P(I) = cµhµ(n)dt + o(dt), (2.78)

where o(dt) is the higher order terms. Similarly the probability of occurring the

second reaction event, P(II) can be constructed as [14, 15, 78]

P(II) = 1 −

M
∑

µ=1

cµhµ(n)dt + o(dt). (2.79)

If dt is too small, then one can neglect the third event. Summing all the probabilities

one obtains

Pn(t + dt) = Pn(t) ×

(

1 −

M
∑

µ=1

cµhµ(n)dt + o(dt)

)

+
M

∑

µ=1

P(n−νµ)(t) × [cµhµ(n)dt + o(dt)] . (2.80)
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Taking the limit, dt → 0 and neglect the higher order terms o(dt), one finally obtains

the master equation as[78]

∂Pn(t)

∂t
=

M
∑

µ=1

[

cµhµ(n − νµ)P(n−νµ)(t) − cµhµ(n)Pn(t)
]

. (2.81)

The form of this master equation is familiar as Gillespie’s chemical master equation

which is constructed in terms of the propensity function by considering the individ-

ual reaction event. Usually master equation is formulated in terms of the transition

probabilities which is equivalent to the propensity function. In terms of the transi-

tion probability, the Gillespie’s chemical master equation (Eq.2.81) can be written

as
∂Pn(t)

∂t
=

M
∑

µ=1

[

wµ(n − νµ|n)P(n−νµ)(t) − wµ(n|n + νµ)Pn(t)
]

, (2.82)

where wµ(n|n − νµ) is the transition probability from the population state, n to

(n − νµ). For M reversible reactions the Gillespie’s chemical master equation can

be written as[13]

∂Pn(t)

∂t
=

±M
∑

µ=±1

[

wµ(n − νµ|n)P(n−νµ)(t) − w−µ(n|n − νµ)Pn(t)
]

. (2.83)

Solution of the master equation gives information about the time evolution of

a chemically reacting system. However, as this equation is a set of coupled ordi-

nary differential equations, the analytical solution is possible only for some simple

cases. For complex systems when the non-chemical or non-linear rate processes are

involved in the master equation, the analytical as well as the direct numerical so-

lution becomes quite difficult. Gillespie’s stochastic simulation technique gives the

numerical realizations about how a chemically reacting system evolves stochastically

with time.

2.6.2 Stochastic simulation of the chemical reactions

Here we have briefly discussed the stochastic simulation which was first developed

by Gillespie to simulate the time evolution of the chemically reacting system [14, 15].

This is mainly a Monte-Carlo simulation where the trajectory of n̄(t) is generated

with time following the probability function P(τ, µ). The quantity P(τ, µ)dτ is de-

fined as the probability that, given the state n̄(t) = n at time t, the next reaction

in Ω will occur in the infinitesimal time interval (t + τ, t + τ + dτ), and will be

an Rµ reaction[14, 15, 78, 79]. The function is also called in the name of ‘reaction

probability density function’ because in mathematical terminology it is a joint prob-

ability density function in the space of the continuous variable τ(0 ≤ τ < ∞) and

the discrete variable µ(µ = 1, 2, ...., M) [14, 15] and the exact formula of P(τ, µ) is

P(τ, µ) = aµ(n)exp[−atot(n)τ ], (2.84)
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where atot =
∑M

µ=1 aµ(n).

From this probability density function one can get the informations about when

the next reaction will occur and what kind of reaction it will be. The next reaction

time, τ gives the first information whereas the index of the next reaction, µ gives

the second. To obtain the explicit expression of the random variable τ , the joint

probability density function, P(τ, µ) can be written as[14, 15]

P(τ, µ) = P1(τ)P2(µ | τ), (2.85)

where P1(τ) indicates the probability of occurring any one reaction during the time

interval dτ and the mathematical expression of P1(τ) is,

P1(τ) = atotexp(−atotτ). (2.86)

Another probability, P2(µ | τ) is designated as the probability of occurring the µ-th

reaction, Rµ during this time interval, dτ and P2(µ | τ) can be written as

P2(µ | τ) = aµ/atot. (2.87)

Using the inverse generating function method [14, 113] we obtain the next reaction

time τ from P1(τ) as

τ =

(

1

atot

)

ln

(

1

r1

)

, (2.88)

where r1 is the the uniform random number. The condition of what reaction will

occur during the time interval dτ can be calculated from the probability P2(µ | τ)

and the condition can be written as[14, 15]

µ−1
∑

ν=1

aν < r2atot ≤

µ
∑

ν=1

aν , (2.89)

where r2 is another uniform random number. In the simulation algorithm the succes-

sive values of a1, a2, ... are cumulatively added until their sum is observed to equal or

exceed r2atot, whereupon µ is then set equal to the index of the last aν , term added.

2.7 Non-equilibrium thermodynamic description

of small systems

In the previous sections we have described the kinetics of small reacting systems,

however, for complete understanding of these reacting systems, here we have pro-

vided a non-equilibrium thermodynamic description. In a closed system, reactions

occur at equilibrium condition where the change of Gibbs free energy, ∆G and

the change of total entropy production, ∆Stot becomes zero[66]. However, an open

chemical system goes arbitrarily far from equilibrium due to the presence of the

chemiostats. For an example, the living cells behave like open system where the

biochemical reactions occur in non-equilibrium condition.
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2.7.1 Non-equilibrium thermodynamics: Fluctuation theo-
rem

Before going to describe the non-equilibrium thermodynamic behavior of small

chemical systems, here we have provided a brief discussion of the fluctuation the-

orems which describe the thermodynamics of finite, even small systems that are

arbitrarily far away from equilibrium. These theorems also explain how macro-

scopic irreversibility appears in the system from the time-reversible microscopic

dynamics. In the past 15 years, several fluctuation theorems(FT) are proposed

[83, 84, 85, 86, 87, 88] which entends our understanding over the conventional ther-

modynamics. However, here we have provided a discussion on the Crooks FT.

Crooks Fluctuation Theorem(FT):

The Crooks FT provides a method of predicting equilibrium free-energy differences

from non-equilibrium paths that connect two equilibrium states[83, 95, 96]. The

fluctuation theorem is constructed by considering the two assumptions, (I) the sys-

tem evolves with time by following the Markovian dynamics and (II) each single

time step is microscopically reversible. To discuss the FT of Crooks, we consider

a system which is in thermal equilibrium [83, 96] with a bath at temperature, T.

The internal state of the system, xt at time t depends on the externally controlled

parameter, λt which determines the energy of the state, E(xt, λt). By moving the

parameter λt through a fixed sequence {λ0, λ1, ...., λτ}, the system evolves with time

sequence {t0, t1, ...., tτ} which generates a trajectory, χ(t) in the phase phase as

χ(t) ≡
(

x0
λ1→ x1

λ2→ x2
λ3→ ........

λτ→ xτ

)

, (2.90)

where the initial state x0 is an equilibrium state at time t = 0 and the corresponding

value of the controlled parameter at this time is λ0.

In this fluctuation theorem it is assumed that after reaching the state xτ , the

system quickly relaxes to equilibrium. So the final state xτ can also be considered

as an equilibrium state. As the system is a canonical ensemble, the equilibrium

probability of the states x0 and xτ can be written as

P(xl, λl) =
e−βE(xl,λl)

∑

i e
−βE(xi,λi)

= exp [βF(β, λl) − βE(xl, λl)] , (2.91)

where l = 0, τ and F(β, λl) = −β−1 ln
∑

i e
−βE(xi,λi) is the Helmholtz free energy

of the system. Here β = 1
kBT

, with β is the Boltzmann constant and T is the

absolute value of temperature. To describe the time evolution of the system it is

considered that until the value of λt is changed the system remains in the same state.

Therefore, for changing the parameter value from λj to λj+1, system performs work,

E(xj, λj+1) − E(xj, λj). At constant λj+1, when the system goes from xj state to
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xj+1, the system exchanges a quantity E(xj+1, λj+1) − E(xj, λj+1) of heat with the

surroundings. This evolution of the system through phase space is repeated for τ

time steps. Therefore, the total work performed on the system, W, the total heat

exchanged with the reservoir, Q, and the total change in energy, ∆E are given by[83]

W =
τ−1
∑

t=0

[E(xt, λt+1) − E(xt, λt)] , (2.92)

Q =
τ

∑

t=1

[E(xt, λt) − E(xt−1, λt)] (2.93)

and

∆E = Q + W = [E(xτ , λτ ) − E(x0, λ0)] . (2.94)

The free energy difference between two equilibrium ensembles, ∆F = F (β, λτ ) −

F (β, λ0) is equal to the reversible work, Wrev and the dissipative work, Wd is the

difference between the actual work and the reversible work i.e.,

Wd = W − Wrev = W − ∆F. (2.95)

Here the actual work and the dissipative work both depend on the path followed

through phase space but the reversible work depends only on the initial and final

ensembles.

Similar to the forward trajectory, a backward trajectory[83, 96], χ̃(t) can be

generated by considering the reverse direction of time and that can be written as

χ̃(t) ≡
(

x0
λ1← x1

λ2← x2
λ3← ...........

λτ← xτ

)

. (2.96)

It is important to note that the forward trajectory begins with a change in λ,

whereas the reverse trajectory is started with a change in the internal state of the

system[83, 96]. In the reverse time direction, the thermodynamic quantities like

heat, work, change in energy and change in free energy would be negative that of

the forward time value. Now if we consider that the evolution of the system is

Markovian, the probability of the forward trajectory, P[χ(t)|x0] can be written as

P[χ(t)|x0] = P
(

x0
λ1→ x1

)

P
(

x1
λ2→ x2

)

.....P
(

xτ−1
λτ→ xτ

)

, (2.97)

where P
(

xj−1
λj
→ xj

)

is the probability of transition from xj−1 to xj. If each single

time step is microscopically reversible then the individual steps obey the detailed

balance and we can write [83, 96]

P
(

xj−1
λj
→ xj

)

P
(

xj−1

λj
← xj

) =
P(xj, λj)

P(xj−1, λj)
=

e−βE(xj,λj)

e−βE((xj−1,λj))
. (2.98)
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Similarly the probability of backward trajectory, P̃[χ̃(t)|x̃0] can be written as

P̃[χ̃(t)|x̃0] = P
(

x0
λ1← x1

)

P
(

x1
λ2← x2

)

.....P
(

xτ−1
λτ← xτ

)

, (2.99)

where x̃t = xτ−t and the tilde symbol implies time reverse path. x0 and x̃0 are the

initial points of forward and backward processes. Now using Eq.(2.97), Eq.(2.99) and

Eq.(2.98), the ratio of the probability of the forward trajectory and the backward

trajectory can be written as

P[χ(t)|x0]

P̃[χ̃(t)|x̃0]
=

P
(

x0
λ1→ x1

)

P
(

x1
λ2→ x2

)

.....P
(

xτ−1
λτ→ xτ

)

P
(

x0
λ1← x1

)

P
(

x1
λ2← x2

)

.....P
(

xτ−1
λτ← xτ

)

=
e−βE(s1,λ1)e−βE(s2,λ2)...e−βE(sτ ,λτ )

e−βE(s0,λ1)e−βE(s1,λ2)....e−βE(sτ−1,λτ )
= e−βQ, (2.100)

where Q is the heat exchange with the heat bath and −βQ is the corresponding

change in entropy of the bath in units of Boltzmann’s constant. The relation de-

scribed in Eq.(2.100) is known as the Crooks fluctuation theorem.

If we consider the initial equilibrium distribution of the forward and backward

trajectories, we obtain[83]

P[χ(t)|x0]P(x0)

P̃[χ̃(t)|x̃0]P(x̃0)
== e−βQ.eβ(∆E−∆F) = eβ(W−∆F) = eβWd , (2.101)

as W = ∆E − Q.

Now suppose we find other trajectories, χ
′

(t), χ
′′

(t), χ
′′′

(t), ....... along which the

same amount of work W has been done. Then Eq.(2.101) tells us

P[χ(t)|x0]P(x0)

P̃[χ̃(t)|x̃0]P(x̃0)
=

P[χ
′

(t)|x
′

0]P(x
′

0)

P̃[χ̃′(t)|x̃
′

0]P(x̃
′

0)
=

P[χ
′′

(t)|x
′′

0 ]P(x
′′

0)

P̃[χ̃′′(t)|x̃
′′

0 ]P(x̃
′′

0)
= .... = eβ(W−∆F). (2.102)

Using the standard properties of ratios, we have

P[χ(t)|x0]P(x0) + P[χ
′

(t)|x
′

0]P(x
′

0) + P[χ
′′

(t)|x
′′

0 ]P(x
′′

0) + .....

P̃[χ̃(t)|x̃0]P(x̃0) + P̃[χ̃′(t)|x̃
′

0]P(x̃
′

0) + P̃[χ̃′′(t)|x̃
′′

0 ]P(x̃
′′

0) + ....
= eβ(W−∆F). (2.103)

In Eq.(2.103), the numerator is the sum of probabilities of trajectories along with

work W has been performed on the system, whereas the denominator consists of

the corresponding reverse trajectories. Thus, the numerator is the ensemble average

probability of work W being done on the system, and the denominator is that of

work W done by the system along the reverse trajectory. Therefore, we can write

the work fluctuation theorem as[83, 95]

P(W)

P(−W)
= e(W−∆F). (2.104)
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Now we can write

〈e−βW〉 =
∑

χ(t),x0

P(x0)P[χ(t)|x0]e
−βW

=
∑

χ̃(t),x̃0

P̃(x̃0)P̃[χ̃(t)|x̃0]e
−β(W−Wd) = e−β∆F, (2.105)

where we have considered Eq.(2.101) in the second step.

The above relation is called the Jarzynski equality[88]

〈e−βW〉 = e−β∆F, (2.106)

which relates the free energy difference between two equilibrium states and an en-

semble average of the work required to switch between these two configurations.

Integral Fluctuation Theorem:

Here we have briefly described the integral fluctuation theorem [80, 97, 98]. To

describe the fluctuation theorem a quantity r[χ(t)] is defined which can be written

as

r[χ(t)] ≡ ln

{

P[χ(t)|x0]P(x0)

P̃[χ̃(t)|x̃0]P̃(x̃0)

}

, (2.107)

where P[χ(t)|x0]P(x0) is the probability of forward trajectory and P̃[χ̃(t)|x̃0]P(x̃0) is

the probability of the reverse trajectory. Normalization in forward and reverse path

ensemble implies that
∑

χ(t),x0
P[χ(t)|x0]P(x0) =

∑

χ̃(t),x̃0
P̃[χ̃(t)|x̃0]P̃(x̃0) = 1. From

the Crooks fluctuation theorem described in Eq.(2.100) we obtain

P[χ(t)|x0]

P̃[χ̃(t)|x̃0]
= e∆sm ,

where ∆sm is the change of medium entropy production along a trajectory with

∆sm = −βQ. Therefore, Eq.(2.107) can be written as

r[χ(t)] ≡ ∆sm + ln
P(x0)

P̃(x̃0)
. (2.108)

According to Seifert, the system entropy along a trajectory is s(t) = −ln P(xt)[80],

where P(xt) is the probability of remaining the system in the state xt at time t.

Using this definition we can obtain the change of system entropy production, ∆ssys =

s(τ) − s(0) = −ln P(xτ ) + ln P(x0) = −ln lnP(x̃0) + ln P(x0), along a trajectory as

∆ssys = ln
P(x0)

P̃(x̃0)
. (2.109)

Therefore, r[χ(t)] is equivalent to the change of total entropy production along a

trajectory i.e.,

r[χ(t)] = ∆sm + ∆ssys = ∆stot. (2.110)



38

The following general identity can easily obtain as

〈e−∆stot〉 = 〈e−r[χ(t)]〉 =
∑

χ(t),x0

P[χ(t)|x0]P(x0)e
−r[χ(t)] =

∑

χ̃(t),x̃0

P̃[χ̃(t)|x̃0]P(x̃0) = 1,

(2.111)

which is the integral fluctuation theorem. This is supported by the Jarzynski re-

lation, 〈e−βW〉eβ∆F = 1 or 〈e−β(W−∆F)〉 = 〈e−βWd〉 = 1. The dissipation function

related to the βWd or ∆stot is the measure of non-equilibriumness.

Detailed Fluctuation Theorem

To prove the detailed fluctuation theorem, another quantity, r̃[χ̃(t)] is defined for

the backward trajectory dynamics by keeping the analogy with Eq.(2.107),

r̃[χ̃(t)] = ln

{

P̃[χ̃(t)|x̃0]P̃(x̃0)

P[χ(t)|x0]P(x0)

}

, (2.112)

where r[χ(t)] = −r̃[χ̃(t)][99]. Now if the probability P(R) to observe a trajectory

with r[χ(t)] = R during the forward dynamics is related to the probability P(−R)

to observe a trajectory with r̃[χ̃(t)] = −R during the backward dynamics, we can

write

P(R) ≡
∑

χ(t),x0

P(x0)P[χ(t)|x0]δ(R−r[χ(t)]) =
∑

χ(t),x0

P̃(x̃0)P̃[χ̃(t)|x̃0]e
r[χ(t)]δ(R−r[χ(t)])

= eR
∑

χ̃(t),x̃0
P̃(x̃0)P̃[χ̃(t)|x̃0]δ(R + r[χ̃(t)])

or P(R) = eRP(−R), (2.113)

where we have used Eq.(2.107) and Eq.(2.112). As R = r[χ(t)] = ∆stot from

Eq.(2.110), so the detailed fluctuation theorem can be written as

P(∆stot)

P(−∆stot)
= e∆stot . (2.114)

This is useful for the entropy production for single trajectory in non-equilibrium

dynamics which is proved here for both initial and final conditions at equilibrium.

Other Fluctuation Theorems

Here we have just mentioned FT of Evans-Searles[84] and Gallavotti-Cohen[87]

which are not explicitly used in this thesis. The Evans-Searles’ FT explains how

irreversibility is developed naturally in the system whose dynamics are determin-

istic and microscopically reversible[84, 95]. This FT bridges the microscopic and

macroscopic descriptions, relating the time-reversible equations of motion of a sys-

tem to the second law and provides a resolution to the long- standing irreversibil-

ity paradox[95]. The FT relates the relative probabilities, P of observing forward
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and backward trajectories of duration t characterized by the dissipation function,

Ωd = A, taking on arbitrary values A and −A, respectively. So the FT can be

written as[84, 95]
p(Ωd = A)

p(Ωd = −A)
= exp[A], (2.115)

which holds for arbitrary initial distribution. The dissipation function, Ωd is a

dimensionless dissipative energy expressed in units of kBT, accumulated along the

system’s trajectory. From the Eq.(2.115) it can be realized that as the system size

gets larger or the observation time gets longer, anti-trajectories become rare and it

becomes overwhelmingly likely that the system appears time-irreversible according

to the second law of thermodynamics. Gallavotti and Cohen also derived a steady

state FT which is defined at asymptotic limit but its applicability is very rare.

2.7.2 Chemiostatic condition: Non-equilibrium steady state

For a closed system, reactions occur at equilibrium condition where the change of

Gibbs free energy, ∆G and the change of total entropy production, ∆Stot becomes

zero[66]. However, a chemical system can be driven out of equilibrium due to con-

tinuous in-letting of reactants and out-letting of products i.e., the system acts as

a flow reactor. In this situation, this open chemically reacting system goes to the

non-equilibrium steady state(NESS) indicated by the non-zero value of ∆Stot. Due

to constancy of the concentration of the reactants and products at constant value,

the reactant and product molecules behave like chemiostats and the differences of

chemical potentials between the chemiostats generate the fluxes of matter across the

system which mainly drive the system out of equilibrium[13].

To investigate the role of chemiostats to drive the system away from equilib-

rium, we have considered the single molecule enzyme kinetics where the substrate

and product molecules remain constant. The chemical potential difference between

the substrate and the product molecules, ∆µS,P is the summation of the chemical

potential differences ∆µI and ∆µII corresponding to the reactions

E + S
k1

′

−−⇀↽−−
k
−1

ES, (2.116)

and

ES
k2−−⇀↽−−

k
′

−2

E + P, (2.117)

respectively. The value of ∆µi (i = I, II) for these two reactions can be calculated

as[11, 64]

∆µi = kBT ln

(

backward reaction flux

forward reaction flux

)

. (2.118)
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For the reaction in Eq.(2.116), ∆µI is calculated as

∆µI = kBT ln

(

J−1

J1

)

, (2.119)

where the forward and backward reaction flux of corresponding reaction are, J1 =

k
′

1[S]PE and J−1 = k−1PES, respectively. Similarly, the value of ∆µII is

∆µII = kBT ln

(

J−2

J2

)

, (2.120)

where the forward and backward reaction flux of reaction in Eq.(2.117) are, J2 =

k2PES and J−2 = k
′

−2[P]PE, respectively. Therefore, for the overall reaction pro-

cess, the change in the chemical potential between the substrate and the product

molecules is

∆µS,P = kBT ln

(

J−1J−2

J1J2

)

= kBT ln

(

k−1k
′

−2[P]

k
′

1[S]k2

)

. (2.121)

At equilibrium, ∆µS,P = 0 gives

(

k−1k
′

−2[P]

k
′

1[S]k2

)

= 1. (2.122)

If the ratio of the substrate and product concentration, [S]
[P]

are maintained at the

value of

(

k−1k
′

−2

k
′

1k2

)

, the system remains in equilibrium. Otherwise, it goes out of

equilibrium i.e.,the non-equilibrium steady state(NESS).

To describe the non-equilibrium chemical systems, estimation of the thermody-

namic quantities like ∆Stot is essential and for the reacting system the thermody-

namic quantities are generally calculated from the master equation. In the next

sub-section we have discussed about how the thermodynamic quantities can be cal-

culated from the master equation.

2.7.3 Fluctuation Theorem for chemical systems

Recent studies of non-equilibrium thermodynamics reveal that if a small chemical

system remains in far from equilibrium, the thermodynamic quantities like ∆Stot

becomes a fluctuating quantity and it follows the fluctuation theorem [13, 80, 81, 82,

85]. The theorem generally relates the probability of entropy generating trajectories

in the system to those of entropy consuming ones. So to describe the fluctuation

theorem it is necessary to define the entropy on the level of a single trajectory

[85, 81, 82].

To describe the fluctuation theorem for a chemical system we have considered a

system having m different types of chemical species {S1, S2, ....., Sm}, which interact
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through M chemical reactions {R1, R2, ........, RM}. The system is confined to a

constant volume Ω and is in thermal (but not in chemical) equilibrium at some

constant temperature T. The number of molecules of species Si in the system at

time t is ni(t) and the corresponding molecular populations state vector is n(t) =

(n1(t), n2(t), ...., nm(t)), given that the system was in state n0 at some initial time

t0 = 0. For this system a stochastic trajectory, χ(t) can be considered which is

depicted in Fig(2.5), generated due to evolution of the population state vector, n(t)

[81, 82, 85, 99] with time which starts from n0 at time t0 = 0 and jumping at time

tj from nj−1 to nj ending up at nN with tN+1 = T [99]. During jump from the state

n
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n n
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Figure 2.5: A schematic representation of a forward trajectory, χ(t).

nj−1 to nj, any one of the M reactions will occur and the time interval τj between

the two jumps is a random variable following the exponential distribution which

is described in Eq.(2.86). Here w(nj−1, tj|nj) is the transition probability from the

state nj−1 to nj through a reaction Rµ with the stoitiometric vector ν
j
µ along a single

trajectory. A time reverse trajectory, χ̃(t) shown in Fig.(2.6), is generated due to

the occurrence of a reaction whose state changing vector −ν
j
µ is exactly opposite

to the state changing vector, ν
j
µ of the forward reaction. Now the probability of

occurring the forward trajectory can be calculated as

P[χ(t)|n0] = Pn0(0)

[

N−1
∏

j=0

(

∫ tj+1

tj

Pnj
(t′)dt′

)

× w(nj, tj+1|nj+1)

]

×

∫ tN+1

tN

PnN
(t′)dt′.

(2.123)

Here
∫ tj+1

tj
Pnj

(t′)dt′ is the probability of occurring no reaction in the nj state during

the time interval tj to tj+1 and normalization in the trajectory-space implies that
∑

χ(t) P[χ(t)|n0] = 1. Now using the relation of the probability of occurring no
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Figure 2.6: A schematic representation of a backward trajectory, χ̃(t).

reaction described in Eq.(2.79), we obtain

Pnj
(t′ + dt′) = Pnj

(t′)

[

1 −
M

∑

µ=1

aµ(nj)dt′

]

. (2.124)

Expanding the probability, Pnj
(t′ +dt′) by Taylor expansion method and neglecting

the higher order terms we get[15]

∫ tj+1

tj

Pnj
(t′)dt′ =

∫ τj

0

Pnj
(τ ′)dτ ′ = exp

[

−

M
∑

µ=1

aµ(nj)τj

]

, (2.125)

where τj = (tj+1 − tj) and Pnj
(0) = 1. Similarly the probability of occurring the

backward trajectory can be written as[99]

P̃[χ̃(t)|ñ0] = P̃nN+1
(0)

[

N
∏

j=1

(

∫ T−tj

T−tj+1

P̃nj
(t′)dt′

)

× w̃(nj, T − tj|nj−1)

]

×

∫ T

T−t1

P̃n0(t
′)dt′, (2.126)

where ñ0 = nN+1 and Pn(N+1)
(T) = P̃n(N+1)

(0). The normalization in the reverse path

ensemble implies
∑

χ̃(t) P̃[χ̃(t)|ñ0] = 1. For the backward trajectory, Eq.(2.125) can

be written as

∫ T−tj

T−tj+1

P̃nj
(t′)dt′ =

∫ τ̃j

0

Pnj
(τ̃ ′)dτ̃ ′ = exp

[

−

M
∑

µ=1

aµ(nj)τ̃

]

, (2.127)

where τ̃ = [(T − tj) − (T − tj+1)] = (tj+1 − tj) = τ . From Eq.(2.125) and Eq.(2.127)

it is observed that the probability of occurring no reaction in the nj state for the
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forward and backward trajectories is same. Therefore, the ratio of the probability

of forward and backward trajectories can be written as

P[χ(t)|n0]

P̃[χ̃(t)|ñ0]
=

Pn0(0) × w(n0, t1|n1) × w(n1, t2|n2) × ...... × w(nN−1, tN|nN)

P̃nN+1
(0) × w̃(nN, T − tn|nN−1) × ...... × w̃(n1, T − t1|n0)

.

(2.128)

Taking the logarithm on both sides we get

r[χ(t)] = ln

{

P[χ(t)]|n0]

P̃[χ̃(t)|ñ0]

}

= ln
Pn0(0)

P̃n(N+1)
(0)

+
N

∏

j=1

ln
w(nj−1, tj|nj)

w̃(nj, T − tj|nj−1)
, (2.129)

where r[χ(t)] is the logarithmic ratio of the forward and backward trajectory prob-

abilities. Now according to Seifert, the entropy production along a single stochastic

trajectory can be defined as [81, 99]

s(t) = −ln Pn(t), (2.130)

where Pn(t) is the solution of the stochastic master equation for a given initial

condition, Pn0
(t0), taken along the specific trajectory χ(t). Therefore, the system

entropy along a trajectory can be written as

∆ssys = ln
Pn0(0)

PnN+1
(T)

, (2.131)

and the medium entropy production is expressed as

∆sm =
∑

j

ln
w(nj−1, tj|nj)

w(nj, tj|nj−1)
. (2.132)

Here w(nj−1, tj|nj) is the transition probability from the state nj−1 to nj. So the first

term of the right hand side in Eq.(2.129), ln

(

Pn0 (0)

Pn(N+1)
(T)

)

= ∆Ssys and the second

term is equal to the medium entropy production along a single trajectory, ∆Sm.

Therefore, Eq.(2.129) can be written as

ln

{

P[χ(t)|n0]

P̃[χ̃(t)|ñ0]

}

= ∆Ssys + ∆Sm = ∆Stot. (2.133)

Similar to the Eq.(2.129), we can write

r̃[χ̃(t)] = ln

{

P[χ̃(t)|ñ0]

P[χ(t)|n0]

}

, (2.134)

where r[χ(t)] = −r̃[χ̃(t)][99]. Now the probability P(R) to observe a trajectory such

that r[χ(t)] = R during the forward dynamics is related to the probability P(−R)

to observe a trajectory such that r̃[χ̃(t)] = −R during the backward dynamics

P(R) ≡
∑

[χ(t)]

P[χ(t)|n0]δ(R − r[χ(t)]) =
∑

[χ(t)]

P̃[χ̃(t)|ñ0]e
r[χ(t)]δ(R − r[χ(t)])
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= eR
∑

[χ̃(t)] P̃[χR(t)]δ(r[χ̃(t)] − (−R))

or P(R) = eRP(−R), (2.135)

which is the detailed fluctuation theorem. By integrating over e−RP(R) = P̃(−R)

over R, we obtain the integral fluctuation theorem

〈e−r[χ(t)]〉 = 1. (2.136)

Therefore, if the system is in far from equilibrium, the fluctuating thermodynamic

quantities like change in the total entropy production, ∆Stot follows the integral as

well as the detailed fluctuation theorem.

2.7.4 Estimation of thermodynamic quantities from the
master equation

Here we have estimated the thermodynamic quantities, mainly the entropy produc-

tion rates from the master equation. The system entropy is defined in terms of the

Shannon entropy as [13, 74, 100, 101, 102, 103, 104],

Ssys(t) = −kB

∑

n

Pn(t)ln Pn(t), (2.137)

where we set the Boltzmann constant, kB = 1. Using the master equation described

in Eq.(2.83), we get the system entropy production rate [13, 74, 100, 101] as

Ṡsys(t) =
1

2

∑

n,µ

[wµ(n − νµ|n)P(n−νµ)(t) − w−µ(n|n − νµ)Pn(t)]

×ln
P(n−νµ)(t)

Pn(t)
. (2.138)

We have assumed ideal reservoir(surroundings) with no inherent entropy production

except through the boundaries of the system. The system entropy production(ep)

rate can be split as[100, 101, 102, 103, 104]

Ṡsys(t) = Ṡtot(t) − Ṡm(t). (2.139)

Here the first term in the r.h.s. of equation(2.139) gives the total entropy produc-

tion rate and the second term denotes the medium entropy production rate due to

the entropy flux into the surroundings. Therefore the total and medium entropy

production rates [13, 74, 100, 101] are defined as

Ṡtot(t) =
1

2

∑

n,µ

[wµ(n − νµ|n)P(n−νµ)(t) − w−µ(n|n − νµ)Pn(t)]

× ln
wµ(n − νµ|n)P(n−νµ)(t)

w−µ(n|n − νµ)Pn(t)
(2.140)
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and

Ṡm(t) =
1

2

∑

n,µ

[wµ(n − νµ|n)P(n−νµ)(t) − w−µ(n|n − νµ)Pn(t)]

× ln
wµ(n − νµ|n)

w−µ(n|n − νµ)
. (2.141)

Ṡm(t) is equal to the heat dissipation rate hd(t). From the master equation we can

also calculate the free energy dissipation rate as

Ḟ(t) =
T

2

∑

n,µ

[wµ(n − νµ|n)P(n−νµ)(t) − w−µ(n|n − νµ)Pn(t)]

×ln
P(n−νµ)(t)P

ss
n

Pn(t)Pss
(n−νµ)

, (2.142)

where Pss
n

is the steady state probability distribution of the n state.

At equilibrium, Ṡtot(t) becomes zero and the master equation satisfies the de-

tailed balanced condition whereas, for non-equilibrium situation, the value of Ṡtot(t)

becomes a non-zero quantity and at NESS the master equation follows the circular

balance condition. Integrating Ṡtot(t) between the initial time, t0 = 0 to final time,

tf = t, we get the total entropy production, ∆Stot.
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Chapter 3

A stochastic theory of interfacial
enzyme kinetics: kinetic Monte
Carlo study

In this chapter, we have formulated a theory to explore the advancement of the

interfacial enzyme kinetics at the single enzyme level, which is ultimately utilized

to obtain the ensemble average macroscopic feature, the lag-burst kinetics. After a

brief introduction about the goal of our study in Section 3.1, we have introduced

a model in section 3.2 to describe the hopping and scooting mode of motion of

the interfacial enzyme kinetics. A stochastic formulation and simulation technique

is provided in section 3.3. Numerical results are discussed in section 3.4 by first

providing single enzyme activity for some experimental parameters and then the

ensemble average kinetics in the bulk. Finally, the chapter is concluded in section

3.5.

3.1 Introduction

The study of interfacial enzymatic reaction is gaining increasing importance in

biological science as enzyme plays a crucial role as catalyst of lipid metabolism on

the membrane and as mediator of cell signaling processes[105]. It is a heterogeneous

enzymatic reaction where the rate of the reaction depends on both the mechanical

and chemical steps involved. From the experimental observation, it is well known

that the activity of an interfacial enzyme is maximum where both the fluid and

gel state phospholipid molecules coexist[1, 3]. Due to different packing pattern, gel

state phospholipid molecules are tightly packed than the fluid state molecules. So an

enzyme adsorbs exclusively in the fluid region and gradually diffuses to the fluid-gel

boundary[1, 2]. With the progress of the reaction, the product molecules i.e, lyso-

phospholipids and fatty acids are accumulated in the surface and forms a product

domain in between the gel and fluid domain [3, 7, 19, 20, 21, 22, 106]. Usually the

47
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product molecules i.e, fatty acids are negatively charged and with increase in size

of the product domain, the electrostatic interaction between the positively charged

enzyme and the negatively charged surface also increases. It is observed that the

formation of an appreciable size of product domain is responsible for the lag-burst

kinetics. This phenomenon is characterized by initial slow hydrolysis in the lag

phase, followed by a sudden increase in activity of the enzyme by two or three

orders of magnitude, the burst phase [23, 25, 107, 108, 109, 110]. Lag-burst kinetics

is the most important macroscopic feature of interfacial enzyme kinetics. Previously,

various kinetic analysis had been performed by considering the interactions among

the enzyme-phospholipid molecules[23, 25]. However, no microscopic theoretical

study is found in terms of the dynamical processes by considering the single molecule

activity on the phospholipid monolayer.

Here we have studied the macroscopic feature of interfacial enzyme kinetics

starting from the single enzyme activity. At the single molecule level, this reac-

tion kinetics becomes a stochastic process and the analysis involves single molecule

trajectory[60, 61, 111]. It is well known that due to thermal hopping, an enzyme

can come out from the gel domain, or due to electrostatic binding of the enzyme on

the gel surface, it can keep on doing hydrolysis of successive phospholipid molecules

in the scooting mode. We have simulated the stochastic processes for the hopping

and scooting mode of motion, as both the modes can be operated probabilistically

at the same time and it depends on the amount of product formed in the trajectory

of a single enzyme. The ensemble averaging of single trajectory events gives the

macroscopic rate of the reaction, by which the lag-burst kinetics can be described.

In the spirit of Gillespie’s method [14, 15], we have studied the stochastic turnover

events due to mechanical and chemical steps of the single enzyme activity. Finally,

we have searched for any dynamic correlation which can be developed due to the

motion of enzyme over various time scales of motion in the different heterogeneous

phases.

3.2 Movement of the enzyme on the interface:

hopping and scooting motion

In this section, we have given a probabilistic description of two familiar interfa-

cial enzymatic reaction schemes, namely hopping and scooting mode of motion in

terms of the desorption and adsorption probability of a surface bound enzyme as

shown in Fig.(3.1) . The significant difference between these two mechanisms is that

in the hopping mechanism, an enzyme moves out from the gel state after complet-

ing a Michaelis-Menten cycle along with the diffusion in fluid and product region.

However, in the scooting mode, an enzyme is strictly attached with the phospho-

lipid monolayer and gradually hydrolyzes the phospholipid molecules. Therefore,
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Figure 3.1: (a) An enzyme is attached with the fluid state phospholipid molecules on
the Langmuir monolayer. (b) Through the diffusion, the enzyme molecule reaches
the gel-fluid interface. (c) After hydrolysing a phospholipid molecule, it predomi-
nantly leaves the surface in the lag phase. (d) The enzyme is strictly attached to
the surface with scooting mode of motion and the burst phase appears.

the reaction scheme of the hopping mode for one turnover can be written as

E∗
f

Kd1→ E∗
P

Kd2→ E ∗
g + S

k1−−⇀↽−−
k−1

E ∗
g S

k2→ E∗
gP

k3→ E∗
g
0 + P→E(bulk). (3.1)

Here, E∗
f and E∗

P are designated as the conformations of an interfacial enzyme in

the fluid and the product region, respectively. Actually these two conformations are

mainly responsible for the diffusive motion of the enzyme along the fluid and the

product regions. To hydrolyze a gel state phospholipid molecule, an enzyme is first

converted into the conformation E∗
g from the conformation E∗

P so that a phospholipid

molecule binds to the interfacial enzyme. The other conformations, like E∗
gS, E∗

gP,

and E∗
g
0 are designated as the substrate-bound enzyme, the product-bound enzyme,

and the enzyme after just releasing a product molecule, respectively. In the hopping

mode, an enzyme leaves the surface of the monolayer and goes to the bulk. The

conformation E represents the free enzyme in the bulk. Similarly the reaction scheme

for the scooting mode can be written as

E ∗
g + S

k1−−⇀↽−−
k−1

E ∗
g S

k2→ E∗
gP

k3→ E∗
g
0 + P (3.2)

E∗
g
0 δ
→ E∗

g.

The terms, E∗
g, E∗

gS, E∗
gP and E∗

g
0 carry the similar meaning as described in the above

case. In this mechanism, the conformation E∗
g
0 changes quickly to the conformation

E∗
g and the enzyme starts another turnover cycle.
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From the above two mechanisms, it is observed that a surface bound enzyme may

desorb or reside at the monolayer after completion of a Michaelis-Menten turnover

cycle. Therefore, at any instant these two modes compete each other and this

competition strictly depends on the electrostatic interaction between the positively

charged enzyme and the negatively charged surface. Here, the desorption probability

of an enzyme is designated as pd and the adsorption probability is pa, where pd =

(1 − pa). With increase in the fraction of negatively charged product molecules,

θ, the electrostatic energy as well as the adsorption probability, pa of an enzyme

increases with time. If we consider that ∆(θ) is the electrostatic binding energy

developed due to the fraction of product formed, θ at time t, then one can find

d∆(θ) = k∆(θ)dθ,

where k is the proportionality constant and it is unitless. It depends on the polarity

of the substrate molecules. Integrating up to θ = θburst, at which the interaction

energy, ∆(θ) reaches a saturation value, ∆(θ)burst, we get

∆(θ) = ∆(θ)burst[exp(−k(θburst − θ))]. (3.3)

Here θburst is designated as the fraction of product molecules responsible for the

burst kinetics. Actually beyond the value of θburst, enzyme is strictly attached to

the gel surface and gradually hydrolyzes the gel state phospholipid molecules in the

so called ‘scooting mode’.

Furthermore, the above Eq.(3.3) can be written in terms of the adsorption prob-

ability as

pa =
∆(θ)

∆(θ)burst

= [exp(−k(θburst − θ))]. (3.4)

In the initial stage, when θ is very small, pd dominates over pa and the enzyme

follows the hopping mode motion. But when θ >> θburst, enzyme strictly follows

the scooting mode motion as pa dominates over pd. However, at any intermediate

time both the hopping and scooting mode mechanism will be operative with the

respective probabilities, pd and pa. Basically, it is observed that pd >> pa during the

lag period, whereas the reverse phenomenon is occurred after the burst. Therefore,

the magnitude of the probabilities pd and pa determine the different enzymatic

motion which ultimately dictates the macroscopic lag-burst kinetics.

3.3 Stochastic formulation of interfacial enzyme

kinetics and simulation technique

In this section, we have provided a stochastic simulation kinetics following the

approach of Gillespie for the chemical and mechanical steps of single enzyme activity,

which upon ensemble averaging will give the macroscopic rate. To simulate the

stochastic turnover time of a single enzyme, we have considered the kinetics along
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its own trajectory. The movement of an enzyme along the fluid region is modelled

by a two dimensional Brownian motion. The Monte-Carlo method has been used

for simulating two-dimensional Brownian motion in a square plane of side L as a

random walk model, in which each displacement is of equal length, say l, but in

random direction[112]. By this technique, the mean square displacement, 〈r2〉 is

calculated by the following relation

〈r2〉 = 4DMtc = Ml2, (3.5)

where D is the diffusion coefficient of the particle, M is the sufficiently large Monte-

Carlo (MC) steps, l is the length covered by the particle per MC step and tc is the

time interval between two successive MC steps. The total diffusion time, t can be

calculated by the relation t = Mtc, where tc = l2

4D
.

Here our main interest is to calculate the time, τfluid, required to cross the fluid

region of an arbitrary finite area by an enzyme i.e., the residence time of the enzyme

in that region. For this purpose, we have considered that nf number of phospholipid

molecules are present in the fluid region. If the area of the head group of a phos-

pholipid molecule be a, then the total area of the fluid region is (a × nf). Here we

assume that the distance between two adjacent molecules is negligible compared to

the dimension of the enzyme. The number of fluid state phospholipid molecules cov-

ered by an enzyme along its trajectory in a turnover is say, n, where n is an integer

random number and that ranges from 1 to nf . Here n is equivalent to the number

of MC steps in the Eq.(3.5). However, to calculate the 〈r2〉, the Monte-Carlo steps,

M should be large enough but in our case n can be small. Therefore, the above

relation in Eq.(3.5) can not be directly useful in this context. So to calculate the

residence time in the fluid region, τfluid, we have first calculated the area covered by

an enzyme, (n× a) and then divided it by the diffusion coefficient of the enzyme in

the fluid region, Dfluid. Hence τfluid can be written as

τfluid =
(n × a)

Dfluid

. (3.6)

Similarly, if we consider that at any time t, m number of product molecules be

present in the product region and the area of the head group of a product molecule,

lyso-phospholipid, be b, then the residence time of the enzyme in the product region

can be expressed as

τprod =
(m × b)

Dprod

, (3.7)

where Dprod is the diffusion coefficient of the enzyme in the product region. The

above two steps are mechanical in nature. When the enzyme molecule reaches the

gel-fluid boundary, it starts performing chemical reaction which is modelled here

as Michaelis-Menten steps. During a turnover cycle, a surface bound enzyme can

hydrolyze only one substrate molecule among all the substrate molecules that E∗
g
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“sees” on the surface, which are closer to its path. If at time t, S(t) number of

substrate molecules are closer to the path of an enzyme, then the rate of the reaction,

E + S
k′

1→ ES will be k1 = k′
1 × S(t). Therefore, the rate constant of the reaction

becomes second order as the the value of S(t) can vary with time. However, change

in this number is very small compared to the total substrate molecules present in

the surface. So, we have taken this number S(t) as a constant value. consequently,

k1 becomes the pseudo first order rate constant. Except at the very end of the

reaction, when the accumulation of the product molecule is very high and well

dispersed, this approximation can be physically tenable. To calculate the residence

time in the gel state, τgel, for a single enzyme molecule, we have considered the

following probabilistic rate equations[60, 111]:

dP∗
Eg

(τ)

dτ
= −k1PE∗

g
(τ) + k−1PE∗

gS(τ), (3.8)

dPE∗

gS(τ)

dτ
= k1PE∗

g
(τ) − (k−1 + k2)PE∗

gS(τ), (3.9)

and
dPE∗

gP(τ)

dτ
= k2PE∗

gS(τ). (3.10)

The residence time distribution of an enzyme in the gel state, fgel(τ) can be calculated

as

fgel(τ) =
dPE∗P(τ)

dτ
= k2PE∗S(τ). (3.11)

Calculating the value of PE∗S(τ) from the Eq.(3.8)- Eq.(3.10) and substituting this

value in Eq.(3.11), we obtain

fgel(τ) =
k1k2

2A

[

e−(B−A)τ − e−(B+A)τ
]

, (3.12)

where B = (k1 + k−1 + k2)/2 and A =
√

(k1 + k−1 + k2)2/4 − (k1k2). The average

value of τgel is,

〈τgel〉 =
k1 + k−1 + k2

k1k2

=
1 + KM

k2

, (3.13)

where KM is the Michaelis-Menten constant of the corresponding enzyme.

In the next reaction step, E∗
gP

k3→ E∗
g
0, a gel state phospholipid molecule is

converted into a product molecule, which is valid both for the hopping and the

scooting modes of motion. The time taken to complete the reaction is designated

here as τconvert, which is a random quantity at the single enzyme level. As the

reaction is uni-molecular, its probability density function must be an exponential

distribution which can be written as

fconvert(τ) = k3e
−(k3τ). (3.14)
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The average time required for an enzyme to complete the reaction step is

〈τconvert〉 =
1

k3

. (3.15)

To get the random time, τgel from the corresponding residence time distribution,

fgel, we use the inversion generating method and calculate the corresponding time

in terms of the uniform random number[113]. In the inversion generating method,

the random numbers from the uniform distribution in the unit interval is used to

construct random numbers, distributed according to any desired probability density

function. For generating a random number x, according to a prescribed density

function P(x), a uniform random number ‘r’ is constructed and then the value of x

is chosen so that it satisfies F(x) = r, where F(x) =
∫ x

−∞
P(x′)dx′. In other words,

we take x = F−1(r), where F(x) is the cumulative distribution function of the given

probability density function. For calculating the reaction time τgel, we consider the

probability density function is, fgel(τ). Hence the cumulative distribution function,

Fgel(τ) corresponding to the residence time distribution function fgel(τ) is,

Fgel(τ) = −
K

B − A

[

e−(B−A)τgel − 1
]

+
K

B + A

[

e−(B+A)τgel − 1
]

, (3.16)

where K = k1k2

2A
. Now according to the inversion method, one can write Fgel(τ) = r,

where r is a uniform random number. Substituting the value of r instead of the

term Fgel(τ) in the above equation and after simplifying we get,

r

K
−

2A

(B2 − A2)
= −

e−(B−A)τgel

(B − A)

[

1 −
B − A

B + A
e−2Aτgel

]

. (3.17)

As the value of ‘A’ is large, e−2Aτgel → 0 and we obtain the value of τgel as

τgel =
1

(B − A)
ln

[

k1k2

2A(B − A)r

]

, (3.18)

where r is a uniform random number. Similarly the random time, τconvert can be

calculated from the probability density function fconvert(τ). The residence time dis-

tribution, fconvert(τ) = k3e
−(k3τconvert) of this event gives the cumulative distribution

function,

Fconvert = 1 − exp[−k3τconvert]. (3.19)

According to the inversion method, we can write Fconvert = r, where ‘r’ is a uniform

random number. Hence r = 1 − exp(−k3τconvert) gives,

τconvert =
1

k3

ln

(

1

r

)

, (3.20)

where r is a uniform random number.

From the above discussion, now we can calculate the corresponding turnover

time i.e, total time required to hydrolyze a gel state phospholipid molecule during
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the hopping or scooting mode which will obviously be stochastic in nature. The

turnover time in the hopping mode is

τhop = τfluid + τprod + τgel + τconvert. (3.21)

Similarly, for the scooting mode the turnover time can be written as

τscot = τgel + τconvert. (3.22)

As the time required to hydrolyze a phospholipid molecule is greater in the hopping

mode, the product formation rate must be higher in the scooting mode. After

obtaining the corresponding turnover times for the hopping and scooting modes with

their probabilistic occurrence with pd and pa, respectively, one can get the average

turnover time of a trajectory for a single enzyme. Then we can easily calculate the

ensemble average rate of product formation corresponding to the bulk kinetics. If X

be the number of enzymes present in the monolayer and in a particular time interval,

τint the number of product molecules formed by these enzymes are Q1, Q2,....,QX,

respectively, then the average macroscopic rate of the reaction per unit enzyme is

vnet =
〈Q〉

τint

, (3.23)

where 〈Q〉 =
P

i Qi

X
, is the average number of product molecules formed per unit

enzyme over the monolayer.

From the earlier theoretical and experimental[60, 61, 62, 90, 63, 114, 115] stud-

ies on the kinetics of single enzyme molecule due to conformational fluctuation,

the memory effect is explored through auto-correlation function among the random

turnover times,

C(m) =
〈∆τ(0)∆τ(m)〉

〈∆τ 2〉
. (3.24)

If C(m) = 0 for (m > 0), it is considered that the dynamic correlation is absent

in the reaction system and in the presence of dynamic correlation, C(m) decays

from the initial (m = 1) value. The stochastic analysis of the turnover time can be

performed from the detailed calculation of the correlation function of the turnover

time for the hopping and scooting modes by using the formula[116],

C(m) =
n2

n−m

∑n−m
i=1 τiτi+m − (

∑n
i=1 τi)

2

n
∑n

i=1 τ 2
i − (

∑n
i=1 τi)2

, (3.25)

where n is the total number of turnovers, τi is the time of the i-th turnover and m

is the number of turnovers separating τi and τi+m in the time sequence.

3.4 Numerical result: from single enzyme stochas-

tic turnover time to the bulk interfacial kinet-

ics

In this section we have applied the simulation approach to obtain the stochastic
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Figure 3.2: Schematic representation of the interfacial enzyme kinetics reaction in
the (a) hopping and (b) scooting mode mechanism for a single turnover. Here kd1

and kd2 are the inverse of τfluid and τprod which represent the diffusion rates in the
fluid and product regions, respectively.

turnover time of a single enzyme activity for PLA2 enzyme. We have calculated

the ensemble average rate profile for the description of the bulk kinetics of lag

burst phenomenon. We have considered the diffusion parameters of the system for

the stochastic features of the single trajectory of PLA2 enzyme which is studied

recently through wide-field fluorescence microscopy [1], whereas the chemical rate

parameters are taken from the experimental papers of Berg et al. [3]. An arbitrary

set of reaction rate parameters of single enzyme activity[60] are also taken to show

the general validity of our theory.

3.4.1 Description of the single enzyme kinetics

To describe the kinetic schemes in the hopping and scooting modes, we have

shown the various mechanical and chemical reaction steps which is shown in Fig.(3.2).

According to the reaction scheme in the hopping mode, the steps E∗
f→E∗

p, and

E∗
p→E∗

g, are occurred in the fluid and product region. These two reaction steps are

completely mechanical in nature because in these steps only the diffusive movement

of the enzyme is occurred. The other conformational states e.g, E∗
g, E∗

gS and E∗
gP

must be in the gel region. Therefore, the reaction steps E∗
g→E∗

gS, E∗
gS→E∗

g, and

E∗
gS→E∗

gP are occurred in the gel region. The other more nontrivial reaction step is,

E∗
gP→E∗

g
0 because in this chemical step, a phospholipid molecule is totally converted

into the product molecules, lyso-phospholipid and fatty acid. Therefore, a turnover

time can be written as,

τhop = τmech + τchem, (3.26)
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Figure 3.3: (a) Plot of fgel versus τgel is displayed with the rate parameters, k1=1350.0
sec−1, k−1=35.0 sec−1, k2= 400.0 sec−1 and k3= 450.0 sec−1. (b) fconvert is plotted
with τconvert for the same rate parameters. Here fconvert is an exponential distribution
where k3 is average rate constant of the product formaion step. Same plots, fgel
versus τgel and fconvert versus τconvert are plotted in (c) and (d) by considering the
rate parameters, k1=120.0 sec−1, k−1=30.0 sec−1, k2= 40.0 sec−1 and k3= 50.0 sec−1,
respectively.

where τmech and τchem are designated as the time required to complete the mechanical

and the chemical steps, respectively.

In the scooting mode, the turnover time can be written as,

τscoot = τchem, (3.27)

thereby the time required to hydrolyze a phospholipid molecule is greater for the

hopping mode than the scooting mode. We have considered the diffusion coefficient

values along the fluid region and product region are 3µm2/sec and 0.2µm2/sec,

respectively. The experimental values of the average residence time along the fluid

and product region is 30 and 220 msec, respectively. For simulation, we have taken

the value of k in Eq. (3.4) is 300, which is unit less. We have suitably chosen the

distribution of phospholipid molecules in the fluid region to obtain such average

residence times in the fluid and product regions.

When a PLA2 enzyme molecule starts hydrolyzing a substrate molecule, it first

forms an intermediate complex, E∗
gS followed by another intermediate complex, E∗

gP

which finally gives a product molecule. Fig.(3.3)(a) and (b) are displayed by tak-

ing the first set of parameters values, k1=1350.0 sec−1, k−1=35.0 sec−1, k2= 400.0

sec−1 and k3= 450.0 sec−1 [7], whereas Fig.(3.3)(c) and (d) are drawn by consid-

ering the second set of rate parameter values, k1=120.0 sec−1, k−1=30.0 sec−1,
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Figure 3.4: Plot of autocorrelation function, C(m) versus m is given for the turnover
times, τi in hopping mode of motion in (a) and scooting mode of motion in (b).
Here m is the number of turnovers separating τi and τi+m in the successive turnover
sequence and the rate parameters, k1=1350.0 sec−1, k−1=35.0 sec−1, k2= 400.0 sec−1

and k3= 450.0 sec−1, respectively. Same plots are given in (c) and (d) for hopping
and scooting mode of motion by considering the rate parameters k1=120.0 sec−1,
k−1=30.0 sec−1, k2= 40.0 sec−1 and k3= 50.0 sec−1, respectively.

k2= 40.0 sec−1 and k3= 50.0 sec−1. The first set of parameters values are con-

sidered experimentally[7], whereas the second set of parameters are arbitrarily con-

sidered which corresponds to single enzyme processes[60]. From Fig.(3.3)(a) and

Fig.(3.3)(c), we observe that the probability of remaining in the gel phase, i.e,

fgel(τ) first increases then after a certain time interval it decreases, which indicates

that first an intermediate complex, E∗
gS is formed and then it starts to convert into

another intermediate complex, E∗
gP. If the association rate constant, k1 is large,

then E∗
gS complex is formed quickly and it is converted into E∗

gP complex very soon,

which is shown in the Fig.(3.3)(a) and Fig.(3.3)(c). As fconvert(τ) is an exponen-

tial distribution so it decreases with τconvert exponentially, which indicates that the

intermediate state, E∗
gP is converted into E∗

g
0 state exponentially according to the

value of k3.

In what follows, we have calculated the correlation coefficient, C(m) among the

turnover times, τi and τi+m, where m is the number of turnovers separating τi and

τi+m in the time sequence. Fig.(3.4)(a) and Fig.(3.4)(b) are displayed by taking the

first set of parameter values, whereas Fig.(3.4)(c) and Fig.(3.4)(d) are plotted by

considering the second set of parameter values. From Fig.(3.4)(b) and Fig.(3.4)(d),

we have observed that the correlation coefficient, C(m) among the turnover times

in the scooting mode, τscoot fluctuates around zero. Therefore, one can conclude
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that through this mechanism no memory effect is developed in the system. In the

scooting mode only chemical reaction steps are involved. The chemical reactions

are simple Michaelis-Menten types in which no conformational fluctuation of the

enzyme is considered. Such reactions are simply a renewal type of processes in

which no memory effect is observed[90, 117]. However, turnover times in hopping

mode, τhop, are strongly correlated which is observed in Fig.(3.4)(a) and Fig.(3.4)(c).

The correlation indicates that during the hopping mode mechanism a memory effect

is developed in the system. In the hopping mode both the mechanical and chemical

steps are involved. As we have observed that no memory effect is developed due

to the chemical reactions, we can conclude that the mechanical movements i.e,

variable diffusion coefficients of the enzyme along the fluid and product regions

create this memory effect. Recently, Cao et al. had shown that if a Brownian

particle travels through two distinct diffusive areas of various sizes and geometrical

arrangements i.e, diffusion along the heterogeneous environments, then a memory

effect is developed for such processes[62]. A similar quantitative model can be built

up here to understand the more detailed statistics of the memory effect which can

in principle be observed on the single enzyme trajectory.

3.4.2 Description of bulk properties of interfacial kinetics

Here we have calculated the rate of product formation, vnet and observe a certain

enhancement of product formation rate after the burst which is shown in the Fig.

3.5(a) and Fig. 3.5(b). As the time required to hydrolyze a phospholipid molecule

is greater during the lag phase, the product formation rate must be higher at the

burst phase. If the lag phase is absent then the curve of product formation rate

versus time be a traditional hyperbolic one and that is usually observed from the

ensemble average kinetics experiments carried out by Berg et al.[3].

As the turnover time is random in nature, the statistical features can be under-

stood from its distribution. Here we have calculated the probability distribution

function of such random quantity, P(τturnover) and this distribution is non-Gaussian

in nature which is expected for general non-Markovian process. From Fig.(3.6)(a)

and Fig.(3.6)(b), we see that with increase in the value of θburst, the maximum height

of the distribution curve decreases which indicates that more substrate molecules

are hydrolyzed by the hopping mode of motion.

From the correlation of successive turnover times in single trajectory analysis in

Fig.(3.4), it is found that the correlation arises in the hopping mode which again is

predominantly present in the lag phase in macroscopic reactions. In the lag phase

turnover times are larger and the values of the turnover times are sparsely distributed

over a large range and thereby the distribution becomes skewed towards the higher

values of turnover times. However, in absence of various diffusion time scales of

enzymatic motion over the fluid and product phase the distribution would tend to
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be a Gaussian one.

3.5 Conclusion

In the spirit of Gillespie’s stochastic approach, we have provided a kinetic Monte

Carlo simulation technique for the study of interfacial enzyme kinetics which inter-

polates between the single enzyme trajectory to that of bulk surface. This trajectory

based analysis is essential to describe the microscopic details and the statistical fea-

tures at the single enzyme level which can in principle be observed by the single

molecule fluorescence techniques. By averaging over many trajectories we can get

the ensemble average properties like the lag-burst phenomenon for bulk interfacial

enzyme kinetics.

Our model is based on the experimental observation that the presence of nega-

tively charged hydrolysis product makes the electrostatic binding between the en-

zyme and the product molecules. We have defined the probabilities of occurrence of

both the competing processes, namely the thermal hopping and scooting mode of

motion which ultimately dictates the preference of an enzyme to choose one of them

at a time. We have observed that after the formation of some critical number of

product molecules, the enzyme gets strictly attached to the surface of the phospho-

lipid and follows the scooting mode of motion. We have also applied the simulation

to get the macroscopic results on the overall kinetic rate to show the burst followed

by a lag period.

From the single trajectory analysis, it is found that the various time scales of

diffusion of the enzyme over the fluid and product regions develop a dynamic cor-

relation among the turnover times. The source of this correlation is very different

from the dynamic correlation usually observed in single molecule enzymology due

to the conformational fluctuations[90, 117, 118]. However, it corroborates the fact

that if a Brownian particle travels through two distinct diffusive areas of various

sizes i.e, diffusion along the heterogeneous environments, then a memory effect is

developed[118]. This memory effect is also studied in terms of the distribution

of turn-over times over the average of many trajectories to obtain a macroscopic

impact of this correlation. The memory effect is identified with the range of the

lag-phase in the overall rate profile which can again be characterized by the non-

Gaussian distribution of random time steps in the hopping mode motion. In the

lag phase turnover times are larger than in the burst phase and the values of the

turnover times are distributed over a larger range and thereby the distribution be-

comes skewed towards the higher values of turnover times. However, in the absence

of various diffusion time scales of enzymatic motion over the fluid and product phase

the the distribution would tend to be a Gaussian one characteristic of chemical steps

of the process.

This simulation technique can also be applicable to many complex biological
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processes where various mechanical steps are involved along with the chemical

steps in the overall rate process, e.g., kinetics of the restriction enzyme on a DNA

molecule[119, 120, 121]. By generalizing the model of thermal hopping one can also

obtain the effect of temperature and pressure on the turnover rate and lag-burst

feature of interfacial enzyme kinetics.
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Chapter 4

On the mechanically controlled
oligomeric enzyme catalysis

In this chapter, we have shown how an applied mechanical force affects the ki-

netics as well as the thermodynamics of an immobilized oligomeric enzyme in a

chemiostatic condition where the statistical characteristics of random walk of the

substrate molecules over a finite number of active sites of the enzyme plays im-

portant contributing factors in governing the overall rate and the non-equilibrium

thermodynamic properties. After the introduction in Section 4.2, we have provided

the scheme of the reaction and the master equation suitable for the calculation of

net velocity of the reaction and shown its relation with the isolated turn over rate at

steady state. In section 4.3, we have calculated the various entropy production rates

and explain the simulation procedure to calculate the entropy production along the

single trajectory. The numerical results about the effect of force on the kinetics and

non-equilibrium thermodynamic properties of the reaction system are discussed in

Section 4.4. Finally, The chapter is concluded in Section 4.5.

4.1 Introduction

With the advent of single molecule force spectroscopy and single molecule manip-

ulation techniques, now it is possible to measure directly the forces generated in

chemical reactions and even to exert external forces to alter the extent and fate

of these reactions[26, 27]. This single molecule force spectroscopy represents a

novel experimental method to perform mechanochemistry, in which forces of the

order of 10 − 100 pN applied in manipulating transition state structure even in the

solution phase or in living cells to understand chemical reactivity[27, 28, 29, 30].

Originally, Bell had shown that the rate of the chemical reaction in cell to cell

adhesion process is influenced by the hydrodynamic forces[31]. Now this concept

is extended to arbitrary chemical reactions in biosystem using external mechanical

force. For example, by using the single molecule manipulation technique, one can

63
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investigate the folding kinetics of proteins and RNA[122, 123, 124, 125], the separa-

tion of DNA strands[126, 127] and the mechanical properties of various motor-like

proteins[128, 129, 130]. In a series of works, Szabo and others have established the

concept of single molecule pulling experiment to get kinetics and non-equilibrium

thermodynamics[32, 33]. Fernandez et al. have championed the idea of controlling

chemical reaction kinetics by the mechanical force by first showing the reduction in

disulphide bonds in a protein, a thiol/disulphide exchange reaction, as this reaction

serves as the key step in the function of folding processes of proteins[28, 29, 30]. It

is shown that ten fold increase in reduction rate is possible by applying force over

300 pN range through a force-clamp AFM on an engineered polyprotein. Recent

experimental and theoretical analysis of Gumpp et al. on the single molecular level

by the triggering of enzymatic activity through AFM opens the new way to study

the direct influence of force to manipulate bio-catalytic reactions[6].

Application of the external mechanical force through the atomic force micro-

scope on a single molecule can drive the whole system far away from equilib-

rium. Very often this force can change the thermodynamic stability of a molecule

and can modify the reaction rates [26, 27]. To describe the effect of force and

to give the thermodynamic description of such non-equilibrium single molecule

processes, trajectory analysis is the standard tool already developed in stochastic

non-equilibrium thermodynamics[58, 131, 132]. Trajectory analysis gives funda-

mental relations known as the fluctuation theorems describing the statistical fluc-

tuations in time-averaged properties of many-particle systems in far away from

equilibrium states [83, 84, 85, 86, 87, 88, 97, 99, 133]. Using these relations one

can understand how macroscopic irreversibility emerges from microscopically re-

versible dynamics[83, 95]. Stochastic trajectory approach has been successfully ap-

plied to various systems, e.g, single bio-molecular reactions[80], chemical reaction

networks[134], driven colloidal particles [135] and also single two level systems[136].

Here we have studied the effect of external mechanical force on the kinetic and

thermodynamic properties of an oligomeric enzyme catalysis. The statistical char-

acteristics of binding of substrate molecules over a finite number of active sites on

a single enzyme is formulated through a master equation which is used to calcu-

late the entropy production. We have calculated the statistical average property

over the finite number of active sites. In the limit of large number of active sites

and with very low rate of association of substrates with the enzymatic active sites,

the master equation gives a Poisson distribution in the steady state. Our approach

is a generalization of single to oligomeric molecule enzymology containing many

active sites, which is also an alternative approach of the mean waiting time distri-

bution. We have also numerically obtained the microscopic picture of the entropy

production through the single stochastic trajectory analysis [13, 80, 85] using the

Gillespie’s stochastic simulation approach. Although in the recent literature a great
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deal of effort has been utilized on the exploration of the validity of the fluctuation

theorem in various mechanical and chemical systems, the attempt to find out the

non-equilibrium dynamical properties as a consequence of the fluctuation theorem

is not yet explored with its full potential. Here it is shown how the trajectory based

approach can provide the effect of mechanical force in terms of the distribution of

the entropy production which can not be obtained from the analytical method of

calculation of entropy production specially for the small system.

4.2 Kinetic description of the oligomeric enzyme

In this section we have first described the kinetic scheme of an oligomeric enzyme

at chemiostatic condition and then constructed a master equation for it. We have

also explained the effect of force on the enzyme kinetics reaction and calculated the

the isolated turnover time at NESS.

4.2.1 Scheme of the reaction and the master equation

Single molecule enzyme kinetics are usually studied at the chemiostatic condition

where the concentrations of substrate, [S] and product, [P] are maintained at con-

stant values. In chemiostatic condition, the traditional bulk enzyme kinetics reaction

scheme (see Fig.4.1 (a)) can be reformulated in a simplified manner which is shown

in Fig.4.1(b). In our case, the oligomeric enzyme consists of nT number of identical

subunits and each subunit has one active site. The subunits are linked through extra

covalent bonding by using some cross linking reagents[137]. As each active site can

form one ES-complex, so the reaction scheme can be viewed in terms of the number

of total active sites present at a particular time in the oligomeric enzyme. Here

the active sites which have already formed ES-complex are referred to as occupied

sites and those lying vacant at that moment are called the vacant sites. The scheme

of the oligomeric enzyme catalyzed reaction in bulk and in chemiostatic condition

are depicted in Fig.4.1(c) and Fig.4.1(d). The rate constants, K1 = (k1 + k2) and

K2 = (k−1 + k−2) are designated as the total formation and dissociation rate con-

stants. The pseudo first order rate constants, k1 and k2 are given by k1 = k
′

1[S] and

k2 = k
′

2[P].

The oligomeric enzyme kinetics reaction consists of four reaction channels or

sub-reactions (see Fig.4.1 (c)). Due to the random occurrence of various reaction

channels, the number of occupied sites becomes a fluctuating quantity. If at time t,

n number of occupied sites are present in the system, i.e, the system is in the n-th

occupied state, then after a small time dt, the system goes to a new state, (n + νµ)

through any one of the four possible sub-reactions. Here νµ is designated as the

stoichiometric coefficient of the µ-th reaction with rate constant kµ. Now among

the nT number of total active sites, if n number of sites form ES-complex at time
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t and (nT − n) number of sites remain vacant, then the stochastic master equation

can be written as

dPn(t)

dt
=

±2
∑

µ=±1

[wµ(n − νµ|n)P(n−νµ)(t) − w−µ(n|n − νµ)P(n)(t)], (4.1)

where νµ = 1 with µ > 0 and −νµ = 1 with µ < 0. P(n, t) is the probability

of having n number of occupied states at time t. The transition probabilities are

defined as follows,

wµ(n − νµ|n) = kµ(nT − (n − νµ)), µ > 0

and

wµ(n − νµ|n) = kµ(n − νµ), µ < 0. (4.2)

Substituting the values of transition probabilities from Eq.(4.2) into Eq.(4.1), we

can obtain the simplified form of the master equation as

dPn(t)

dt
= K1(nT − n + 1)P(n−1)(t) + K2(n + 1)P(n+1)(t)
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−K1(nT − n)P(n)(t) − K2nP(n)(t). (4.3)

Solving the master equation by the standard approach of generating function method[12,

89, 138], we get the probability distribution function as

P(n)(t) =
nT!

n!(nT − n)!
[X(t)]n[Y(t)]nT−n, (4.4)

where, X(t) = K1(1−exp(−(K1+K2)t))
K1+K2

, Y(t) = K2+K1exp(−(K1+K2)t)
K1+K2

, assuming that ini-

tially all the active sites are unoccupied. With this initial condition, the time-

dependent average number of occupied sites is given by 〈n(t)〉 = nTX(t) and the

average number of vacant sites is 〈nT−n(t)〉 = nTY(t). The time dependent variance

can be written as σ2(t) = nTX(t) Y(t).

At NESS, the average number of occupied sites, 〈n〉 and the average number

of unoccupied sites, 〈nT − n〉 becomes, 〈n〉 = nTX(ss) and 〈nT − n〉 = nTY(ss),

respectively, where X(ss) =
(

K1

K1+K2

)

and Y(ss) =
(

K2

K1+K2

)

with K1 = (k1 + k2) and

K2 = (k−1 + k−2). Now at NESS, the probability distribution described in Eq.(4.4)

can be written as

P
(ss)
(n) =

nT!

n!(nT − n)!
[X(ss)]n[1 − X(ss)]nT−n, (4.5)

which is independent of initial condition. If nT is very large and X(ss) is very small,
nT!

(nT−n)!
becomes (nT)n and (1 − X(ss))(nT−n) ≈ exp[−nTX(ss)]. Then the probability

distribution becomes Poissonian,

P
(ss)
(n) =

[

nTX(ss)
]n

n!
exp

[

−nTX(ss)
]

=

[

〈n〉(ss)
]n

n!
exp

[

−〈n〉(ss)
]

. (4.6)

If X(ss) is small, then the Michaelis-Menten constant, KM = (k−1+k−2)
k1

becomes large.

So the Poisson distribution is a natural candidate for the enzymes which have large

Michaelis-Menten constants. In contrast to the equilibrium solution of the chemical

master equation for bulk reaction, which is a Poisson distribution with respect to

the number of molecules of each reactant, here also we obtain Poisson distribution

with respect to the number of active sites of the oligomeric enzyme in chemiostatic

condition but in a non-equilibrium steady state. So in the spirit of single molecule

enzymology, single oligomeric enzyme with large Michaelis-Menten constant gives a

bulk-like situation in NESS.

4.2.2 Effect of force on enzyme kinetics reaction:

To manipulate enzymatic activity, a force can be applied to separate the substrate

or product from enzyme molecule. If one begins to separate the molecules along

some direction of minimum work, then according to Bell[31], the free energy must

vary with separation and it passes through a minimum at the equilibrium bonding
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position and work must be done to further separate the molecules. Here we have

considered an event where an external mechanical force is used to lower the activation

barrier of breaking the ES complex, so the kinetics of the reaction can be understood

in terms of the formation or dissociation of ES complex. Now the ES complex

dissociates into either (E+S) or (E+P) and the formation of ES complex depends

on the substrate and product population level. But the dissociation of ES complex

is dependent on applied external mechanical force because if a constant external

pulling force, F is applied on the oligomeric enzyme, then the bonds between the

identical active sites of the enzyme and the substrates feel the force as F cosθ as

shown in Fig.4.2. Here we have considered that each identical bond feels the same

F. X b

X b

bond direction

θ

Eb
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pl

ie
d 
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Figure 4.2: (a) The plot depicts the activation energy, Eb as a function of the
extension of bond along which the bond is ruptured. Here F is the externally applied
mechanical force and Xb is the minimum elongation of the bond for dissociation.
The force reduces the activation energy for the ES-complex dissociation and for large
enough force, the dissociation becomes almost activationless. (b) The direction of
the externally applied mechanical force makes an angle θ with the ES bond direction,
so each bond between an active site of the enzyme and a substrate experience the
force, Fcosθ

magnitude of force F cosθ, so the energy required to break a bond which is between

one active site of the enzyme and a substrate is FXbcosθ, where Xb is the minimum

elongation of a bond for dissociation. Here a typical magnitude of Xb of 0.5 A0 is

sufficient for bond rupture. The total dissociation rate constants should be modified

as[31, 139],

K′
2 = K2exp

[

FXbcosθ

kBT

]

, (4.7)

where K2 = (k−1 +k−2) and K′
2 is the total dissociation rate constant which is mod-

ified by the applied force. Xb is the minimum elongation of a bond for dissociation

and θ is the angle between the force direction and the ‘ES’ bond direction with kB

is the Boltzmann constant and T is the absolute temperature.
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4.2.3 Net velocity of the reaction and isolated turn over
rate:

As we are interested to explain the force induced oligomeric enzyme kinetics in

terms of the average number of occupied and unoccupied sites, which are usually

the ensemble average properties, so we designate the rate of the overall reaction as

‘net velocity of the reaction’. According to the above reaction scheme, at steady

state the rate of product formation is, k−2〈n〉 and the rate of product dissociation

is k2〈nT − n〉, so net product formation rate, vnet is given by

vnet = k−2〈n〉 − k2〈nT − n〉 = nT

[

k−2(K1) − k2(K2)

K1 + K2

]

, (4.8)

where K1 = (k1 + k2) and K2 = (k−1 + k−2). Now if the third step of the reaction

is irreversible, i.e., if k2 is zero, then vnet follows the traditional Michaelis-Menten

equation

vnet = nT
vmax[S]

KM + [S]
, (4.9)

where KM is the Michaelis-Menten constant with vmax = k−2 and KM =
k−1 + k−2

k1

.

A hypothetical isolated turnover reaction can be defined as a turnover initially

with all the active sites of the enzyme are in vacant state and advancing with the

first passage through the product release step, which subsequently means that all

the occupied sites are converted to vacant sites [140]. Here among the nT number

of active sites present in the oligomeric enzyme, each active site completes only one

enzymatic cycle. For one enzymatic cycle the reaction scheme can be written as,

vacant site
K1→ occupied site

K2→.

During a time interval at normal reaction condition more than one enzymatic

cycle may be performed by an active site and this cycle number are varied from

active site to active site. Now in the hypothetical isolated turnover case, consider

that the probability distribution Piso
(m,n)(t) as the probability of having ‘m’ number of

vacant sites and ‘n’ number of occupied sites are present at time t. As the reaction

scheme for an isolated turn over is similar to the concerted reaction of McQuarrie

[9], the master equation can be written as

dPiso
(m,n)(t)

dt
= K1(m + 1)Piso

(m+1,n−1)(t) + K2(n + 1)Piso
(m,n+1)(t)

−K1mPiso
(m,n)(t) − K2nPiso

(m,n)(t). (4.10)

Solution of this master equation gives the average number of vacant sites, 〈m(t)〉iso

and average number of occupied sites 〈n(t)〉iso at time t in a single isolated turnover.

The expression of time dependent average 〈m(t)〉iso and 〈n(t)〉iso are

〈m(t)〉iso = nTe−K1t, (4.11)
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and

〈n(t)〉iso =
nTK1

(K2 − K1)

[

e−K1t − e−K2t
]

. (4.12)

As the total number of active sites is constant, so 〈m(t)〉iso can be written as 〈nT −

n(t)〉iso. Now integration of these expressions with respect to t by considering the

limit from zero to infinity gives the residence time of vacant sites rvac and residence

time of occupied sites roccu. Therefore, the total residence time is , rtotal = rvac+roccu.

The expressions of the rvac and roccu are

rvac =

∫ ∞

0

〈m(t)〉isodt =
nT

K1

, (4.13)

roccu =

∫ ∞

0

〈n(t)〉isodt =
nT

K2

, (4.14)

and

rtotal = nT

[

(K1 + K2)

K1K2

]

. (4.15)

The total residence time for one subunit rtotal is given by, rtotal = (K1+K2)
K1K2

. If k2 = 0,

the net rate becomes vnet = vmax[S]
KM+[S]

where KM is the Michaelis Menten constant with

vmax = k−2 and KM =
k−1 + k−2

k1

. Hence 1/rtotal is equal to the vnet for one subunit.

As there is no interaction present among the subunits of the oligomeric enzyme, each

sub-unit can be assumed as an enzyme having one active site and nT/rtotal gives the

net velocity of the oligomeric enzyme having nT number of subunits. Without going

through the probability distribution function, the average value of occupied sites

and vacant sites in non-equilibrium steady state can be easily calculated in terms

of the residence time of vacant sites and the residence time of occupied sites in a

isolated turnover as

〈n〉 =
roccu

rtotal

nT =
K1

(K1 + K2)
nT , (4.16)

and

〈nT − n〉 =
rvac

rtotal

nT =
K2

(K1 + K2)
nT. (4.17)

So the net velocity of the reaction, vnet at non-equilibrium steady state in terms of

mean residence time can be given by

vnet = nT

[

k−2

(

roccu

rtotal

)

− k2

(

rvac

rtotal

)]

, (4.18)

which are already derived through the master equation. From the expression of the

net velocity of the reaction, it is found that the net rate of the product formation is

directly proportional to the total number of active sites in the oligomeric enzyme.

However, the force and other parameters of the reactions, i.e, substrate and product

concentrations and various rate constants have subtle effect on the net rate of the

product formation.
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4.3 Non-equilibrium thermodynamic characteri-

zation of oligomeric enzyme kinetics

Here we have given a non-equilibrium thermodynamic description of the single

oligomeric enzyme kinetics. It is observed that due to the chemiostatic condition,

an oligomeric enzyme reaction occurs at the non-equilibrium condition. Here we

have first calculated the various entropy production rates from the master equation

and then describe the entropy production along a trajectory.

4.3.1 Entropy production rates from the master equation

To calculate the various entropy production rates, here we have assumed that the

surroundings behaves like an ideal reservoir with no inherent entropy production

except through the boundaries of the system. Usually the system entropy is defined

in terms of the Shannon entropy as

Ssys(t) = −kB

∑

n

Pn(t)lnPn(t). (4.19)

We set the Boltzmann constant, kB = 1. Using the above master equation, we get

the system entropy production rate [13, 74, 100, 101] as

Ṡsys(t) =
1

2

∑

n,µ

[wµ(n − νµ|n)P(n−νµ)(t) − w−µ(n|n − νµ)Pn(t)]

×ln
P(n−νµ)(t)

Pn(t)
. (4.20)

The system entropy production(ep) rate can be split as[100]

Ṡsys(t) = Ṡtot(t) − Ṡm(t). (4.21)

Here the first term in the r.h.s. of Eq.(4.21) gives the total entropy production rate

and the second term denotes the medium entropy production rate due to the entropy

flux into the surroundings. Therefore, the total and medium entropy production

rates are defined as

Ṡtot(t) =
1

2

∑

n,µ

[wµ(n − νµ|n)P(n−νµ)(t) − w−µ(n|n − νµ)Pn(t)]

× ln
wµ(n − νµ|n)P(n−νµ)(t)

w−µ(n|n − νµ)Pn(t)
, (4.22)

and

Ṡm(t) =
1

2

∑

n,µ

[wµ(n − νµ|n)P(n−νµ)(t) − w−µ(n|n − νµ)Pn(t)]
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× ln
wµ(n − νµ|n)

w−µ(n|n − νµ)
. (4.23)

Using the expressions of the corresponding transition probabilities from Eq.(4.2)

and the time dependent solution of the master equation, we finally obtain

Ṡtot(t) = 〈n(t)〉

[

k−1ln

(

k−1X

k1Y

)

+ k−2ln

(

k−2X

k2Y

)]

−〈nT − n(t)〉

[

k1ln

(

k−1X

k1Y

)

+ k2ln

(

k−2X

k2Y

)]

. (4.24)

Now at the NESS, we use the condition of equality of forward and backward

cycle flux instead of detailed balance condition[11]. Therefore, from Eq.(4.1), we

obtain

w1(n − 1|n)P(n−1) − w−1(n|n − 1)Pn = w−2(n|n − 1)Pn − w2(n − 1|n)P(n−1). (4.25)

By using equation ( 4.25 ) in equation (4.22), we obtain the total entropy production

rate at the steady state as

Ṡ
(ss)
tot =

∑

n

[

w1(n − 1|n)P(n−1) − w−1(n|n − 1)Pn]

×ln

(

w1(n − 1|n)P(n−1) × w−2(n|n − 1)Pn

w−1(n|n − 1)Pn × w2(n − 1|n)P(n−1)

)

. (4.26)

After putting the values of the transition probabilities, 〈n〉 and 〈(nT − n)〉 at the

steady state, we obtain

Ṡ
(ss)
tot = nTln

(

k−1k2

k1k−2

)[(

k2k−1 − k1k−2

k1 + k−1 + k2 + k−2

)]

. (4.27)

At
(

k−1k2

k1k−2

)

= 1, Ṡ
(ss)
tot becomes zero and the steady state corresponds to the detailed

balance condition that holds in equilibrium. However, we are in general interested

in the entropy production in the non-equilibrium steady state where
(

k−1k2

k1k−2

)

6= 1.

Integrating Ṡtot between the time interval t0 = 0 to t, we get the total entropy

production, ∆Stot. As we have considered that initially (time t0 = 0) all the sub-

units are vacant, i.e, n=0 with Pn(0) = 1, therefore, from equation 4.19, Ssys = 0 in

the beginning.

4.3.2 Single trajectory analysis of entropy production and
fluctuation theorem

In the previous subsection, the calculated total entropy production from the master

equation is actually an average property. However, for a small system the fluctuation
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is as important as the average and to get an idea about the distribution we have

calculated the total entropy production of an ensemble of trajectories. For a single

trajectory, the system can be quantified in terms of the time series of the number

of occupied sites of the oligomeric enzyme which is a fluctuating quantity due to

the random occurrence of the reaction events within a short time interval. The time

series of the number of occupied sites is calculated by using the stochastic simulation

approach [14, 15]. The simulated single trajectory of forward and backward path

is used to calculate the total entropy production which varies from trajectory to

trajectory as it is a fluctuating quantity.

Let us consider a stochastic trajectory of the number of occupied sites, n(t) which

starts at n0 and jumping at times tj from nj−1 to nj ending up at nl with t = tl,

n(t) ≡ (n0, t0)
νµ

1

→ (n1, t1)
ν2

µ

→ ..... → (nj−1, tj−1)

νµ
j

→ (nj, tj) → ... → (nl−1, tl−1)
νµ

l

→ (nl, tl). (4.28)

Here nj = nj−1 + νj
µ and tj = tj−1 + τj where τj is the time interval between two

successive jumps and j is the population state at time t. During the jump from the

(nj−1) state to the nj state, any one of the four sub-reactions will occur and the time

interval τj between the two jumps is a random variable following the exponential

distribution

p(τj) = a exp(−aτj) (4.29)

with a =
∑±2

µ=±1 w(nj−1; νj
µ) and w(nj−1; ν

j
µ) denotes the transition probability from

the state (nj−1) to the nj state through a reaction channel µ with the stoichiometric

coefficient νj
µ along a single trajectory.

Now a time reversed trajectory can be defined as,

nR(t) ≡ (nl, tl)
−νµ

l

→ (nl−1, tl−1)
−νµ

l−1

→ ... → (nj, tj)

−νµ
j

→ (nj−1, tj−1)... → (n1, t1)
−νµ

1

→ (n0, t0). (4.30)

This time reversed trajectory is generated due to the occurrence of a reaction channel

whose state changing vector −νj
µ is exactly opposite to the state changing vector νj

µ

of the forward reaction channel.

The entropy production along a single stochastic trajectory can be defined as[85]

s(t) = −ln Pn(t) (4.31)

where Pn(t) is the solution of the stochastic master equation for a given initial

condition, Pn0(t0), taken along the specific trajectory n(t). Note that, the single

trajectory entropy is denoted by s whereas the average entropy production, whether

being an ensemble average obtained from the master equation or averaged over many
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trajectories generated in the simulation, is denoted by S. Now the time dependent

total entropy production, ∆stot can be split into a system part, ∆ ssys and a medium

contribution, ∆sm. Hence the change in total entropy along a trajectory can be

written as[81, 82, 85]

∆stot = ∆sm + ∆ssys (4.32)

where

∆ssys = ln
P(n0)(t0)

P(n)(t)
(4.33)

and

∆sm =
∑

j

ln
w(nj−1; ν

j
µ)

w(nj;−νj
µ)

. (4.34)

The ratio of probabilities of the forward trajectory path, p(n(t)|n(t0)) and that

of the backward trajectory path, p(nR(t)|nl) of the reaction system is given by

the quantity e∆stot , obtained by applying the stochastic simulation approach. For

different trajectories we get different total entropy production values and among

them some values may be negative, but the average total entropy production value

must be positive. As the total entropy production values differ from trajectory to

trajectory, so we get a distribution, p(∆stot). When the system reaches a steady

state, the detailed fluctuation theorem is satisfied as

p(∆stot)

p(−∆stot)
= e∆stot . (4.35)

Here we have studied the probability distribution function of entropy production

in terms of the mean and variance of the distribution in the transient and steady

state regime. We have numerically investigated how the negative values of total

entropy appears in a single trajectory due to the applied force and the total number

of active sites of the oligomeric enzyme or the system-size of the problem.

4.4 Results and Discussion:

In this section, we have discussed how an external mechanical force affects the overall

kinetics as well as thermodynamics of an oligomeric enzyme catalysis. For the kinetic

description, we have calculated the variation of average value of occupied sites as

a function of time as well as a function of force and substrate at NESS. Similarly,

the net velocity of the reaction is also studied as a function of force and substrate

at NESS. We have also discussed the variation of average values of occupied and

unoccupied sites with time and force for an isolated turnover. To discuss the non-

equilibrium thermodynamic behavior of the system, we have calculated the system,

medium and total entropy productions in the dynamic regime and at non-equilibrium

steady state for different applied forces. To obtain the medium entropy production
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as well as the distribution of the total entropy production, we have constructed

the time series of the number of occupied sites on the basis of single trajectory

concept and it is adapted with the Gillespie’s stochastic simulation approach. The

simulation studies help us to find out the change of the distribution of the total

entropy production by the externally applied force and on the system size. We

have also studied the variation of mean, variance and the relative variance of the

distribution with function of force at NESS. The studies at NESS give an important

correspondence between the total entropy production rate and the net velocity of the

reaction. To calculate the average substrate binding, 〈n(t)〉, the net velocity of the

reaction and the various entropy production rates, we have taken the rate parameters

as k1 = 15.0, k−1 = 7.0, k−2 = 2.0 and k2 = 1.0, all in s−1, for both analytical and

numerical studies. The total number of subunits of the single oligomeric enzyme is

taken as nT = 20.

4.4.1 Kinetic descriptions of an oligomeric enzyme
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Figure 4.3: (a) Plot of fraction of occupied sites, Y versus substrate concentration,
[S] is hyperbolic. (b) Plot of inverse of occupied sites, (1/Y) versus inverse of
population of substrate, (1/[S]) gives a straight line that is analogous to Lineweaver-
Burk plot. (c) This plot is fraction of occupied sites, Y versus fraction of occupied
sites/substrates, (Y/[S]) is Eadie-Hofstee type plot, which gives a straight line. (d)
Substrate concentration/fraction of occupied sites, ([S]/Y) versus substrates, [S] plot
is Hanes type plot that gives a straight line. All of these plots are done at F=0 pN
and F=5 pN. The nature of the plots remain the same when F=0 pN and F=5 pN
with k

′

1=0.15.

An oligomeric enzyme shows either positive, negative or no cooperativity effect

depending on the nature of the interactions present among the subunits of the

enzyme. The nature of the cooperativity can be understood by the plot of fractional

saturation of the oligomeric enzyme, Y versus substrate concentration, [S]. Usually

fractional saturation of the oligomeric enzyme is expressed as (〈n〉/nT), where 〈n〉 is
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the average number of substrate-bound subunits present in the oligomeric enzyme

at steady state and nT is the total number of sub-units of the oligomeric enzyme.

From the Fig.(4.3)(a), it is observed that Y versus [S] plot is hyperbolic and from

the other plots such as Lineweaver-Burk (Fig.4.3(b)), Eadie-Hofstee (Fig.4.3(c)) and

Hanes (Fig.4.3(d)), the curves are straight lines with positive and negative slopes.

It can be said that the cooperativity is absent in this stabilized oligomeric enzyme

for which the various conditions of cooperativity are extensively discussed[35, 34].

With the present kind of application of an external mechanical force, the nature of

the curves remain the same, so it can be concluded that the application of force

cannot change the nature of the cooperativity present in the enzyme.
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Figure 4.4: (a) Plot of average value of occupied sites 〈n〉(t) versus time with
k

′

1=0.15, k−1= 7.0, k−2=2.0, and k2=1.0, in sec−1 at several substrate values. Time
required to reach a NESS is dependent on the substrate concentration. (b) Probabil-
ity distribution function Pn(t) versus number of occupied sites, n gives the binomial
distribution at different time with the values of force, F=0 and F=10 pN.

The rate of ES complex formation depends on the substrate concentration be-

cause it is maintained at a constant level in chemiostatic condition. From Fig.4.4(a),

it is observed that at first the average value of occupied sites, 〈n(t)〉 increases

with increase in time, but after a certain time, it reaches a non-equilibrium steady

state(NESS). How fast the system reaches a steady state that depends on the con-

centration of the substrate. With increase in time, 〈n(t)〉 increases until a steady

state is achieved but the distribution remains binomial because the total number of

active sites is constant. When an extra mechanical force is applied on the enzyme,

the rate of dissociation is enhanced, as a result 〈n(t)〉 becomes lower which is in

conformity with Fig.4.4(b).

The effect of force on enzyme kinetics can be clearly understood from the con-

sideration of the case of a hypothetical isolated turnover. In an isolated turnover, it
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is observed that with increase in the magnitude of force, the dissociation rate con-

stants are increased and consequently the residence time of the occupied sites, roccu

is decreased, but as the ES complex formation rate is force independent, so residence

time of vacant site remains constant at a particular substrate concentration which

is shown in Fig.4.5(a). As the residence time of occupied sites, roccu is decreased
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Figure 4.5: (a) Plot of average values of occupied sites for isolated turn over, 〈n〉iso
and average value of unoccupied sites 〈nT − n〉iso for isolated turnover versus time
for different values of forces with substrate population S=100 µM and the rate
parameters are k

′

1=0.15, k−1= 7.0, k−2=2.0, and k2=1.0 sec−1. (b) Plot of the total
residence time rtotal versus Force in pN at different substrate population values with
the same set of rate constants.

by the application of a mechanical force, so it is expected that the net velocity of

the reaction, vnet must be increased. The residence time of vacant sites, rvac is in-

dependent of force and the residence time of occupied sites, roccu is decreased with

increase in force. As the total residence time, rtotal = rvac + roccu, so rtotal decreases

with time but when roccu becomes zero at a critical value of force, the reaction of ES

dissociation becomes barrierless and rtotal reaches a steady value. The critical value

at which rtotal becomes constant that depends on the chemiostatic conditions which

is shown in Fig.4.5(b). Dissociation rate constants are increased with increase in

force which gives a lowering of the average value of occupied sites, 〈n〉 at NESS. But

at a particular value of force, 〈n〉 becomes zero. Above this critical value of force,

the ES complex dissociates instantly. The critical value of force is dependent on the

chemiostatic condition which is shown in Fig.4.6(a). From Fig.4.6(b), it is observed

that at NESS, 〈n〉 becomes saturated with increase in substrate concentration at

lower value of external force, but at higher value of force it increases linearly with

increase in concentration of substrate although 〈n〉 never exceeds nT. This is due

to the fact that at lower value of force the rate of ES complex formation is greater

than the rate of dissociation, so 〈n〉 reaches a steady value but at higher value of
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Figure 4.6: (a) Plot of average value of occupied sites 〈n〉 versus force, F in pN with
substrate concentration, [S] in µM at NESS. The rate constants are k

′

1= 0.15, k−1=
7.0, k−2= 2.0, and k2= 1.0 sec−1. (b) 〈n〉 versus [S] is plotted at different values of
force at NESS with the same set of rate parameters.

force, the rate of dissociation become greater than the rate of association. Conse-

quently the reaction becomes a barrierless. From the mathematical point of view

we give a possible explanation by which we can explain why 〈n〉 increases linearly

with substrate concentration.
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Figure 4.7: (a) The net velocity of the reaction, vnet versus force, F is plotted for
different substrate concentration at NESS with the rate parameters k

′

1= 0.15, k−1=
7.0, k−2= 2.0, and k2= 1.0 sec−1. (b) Plot of the net velocity of the reaction, vnet

versus [S] at different values of force at NESS with the same set of rate parameters.
In the above two figures, minimum substrate concentration is considered as 60 µM.

The net velocity vnet increases with external force when the magnitude of force is

comparatively small. But at a particular value of force vnet reaches a steady value.
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This critical value of force is important because above this value, vnet does not in-

crease with further application of force. The reason is that above this force value the

ES complex dissociates instantly, so it can be said that above this critical value of

force the enzyme kinetics reaction becomes a barrierless reaction. The critical value

of force is dependent on the parametric values of substrate and product concentra-

tion in chemiostatic condition which can be seen in Fig.4.7(a). vnet increases with

increase in concentration of substrate and becomes a steady value at lower values

of force. But at a higher value of force, vnet increases linearly with the [S] as shown

in Fig.4.7(b). The possible explanation is that at higher value force ES complex

dissociates instantly.

4.4.2 Non-equilibrium thermodynamic analysis
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Figure 4.8: Plot of (a) ∆Sm, (b) ∆Ssys, (c) ∆Stot and (d) 〈n(t)〉 versus time for force
parameters, F=0 pN and F=30 pN.

Here we have determined the system, medium and total entropy productions,

for a single trajectory using the Gillespie’s stochastic simulation approach. The

corresponding macroscopic (ensemble average) quantities are then calculated from

the averaging over the trajectories ( 2×105 in number) obtained from the simulation.

We have plotted ∆Sm, ∆Ssys and ∆Stot in Fig.4.8 as a function of time determined

at different forces. The time evolution of average number of occupied sites, 〈n(t)〉 at

different forces are also shown. ∆Stot and 〈n(t)〉 are determined from the simulation

as well as from the analytical expression to provide a check of the simulation results.

Now the determination of ∆Ssys from Eq.(4.33) uses the analytical solution of the

master equation, P(n)(t) at various points of time. The plot of ∆Sm, as shown

in Fig.4.8(a), increases with time, initially at a faster rate for lower value of force
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but eventually the rate becomes higher for the larger force. ∆Stot, obtained from

simulation as well as from Eq.(4.24), shows similar behavior as a function of the

force parameter regarding the values at short and long times as shown in Fig.4.8(c).

In Fig.4.8(b), we have plotted the variation of ∆Ssys. After a small time, ∆Ssys

reaches a steady value as the reaction system reaches the NESS. With increase in

force, it reaches the steady value earlier and the magnitude of ∆Ssys decreases with

increase in force. As the magnitude of ∆Ssys is small compared to the value of ∆Sm,

hence the nature of the curve of ∆Sm versus time follows the ∆Stot versus time plot

and at the NESS they grow linear in time. At t → ∞, ∆Sm → ∆Stot which is very

useful when ∆Ssys is not known, for example, when no rate equation is available

although the detailed steps of the reaction may be known. Finally, one can see from

Fig.4.8(d) that 〈n(t)〉 decreases significantly with the application of force as the

force increases the dissociation rate of the ES-complex. Its variation with time and

the force is similar to that of ∆Ssys. It is evident from the figures that the transient

and NESS characteristics of the reaction are exactly followed by the system entropy

production. However, the medium entropy production which is mainly concerned

with the flow through the boundaries of the system, actually takes care of the total

entropy production at NESS when the system property saturates; one can identify

the boundary effect of the system by its size and physical or chemical nature of

interactions between the system and surroundings in terms of the medium entropy.
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Figure 4.9: The distribution of the total entropy production over trajectories,
p(∆stot) versus ∆stot is plotted for different times in (a) and (b) with force, F=
0 pN and F=30 pN, respectively with nT = 20. The corresponding plots for nT = 5
are shown in (c) and (d).

The entropy production, ∆stot along a single trajectory is a fluctuating quantity;
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it has a distribution, p(∆stot), which is shown in Fig.4.9(a) and Fig.4.9(b) at different

time intervals for force values F = 0 pN and F = 30 pN, respectively with nT = 20.

At short times, the distribution is non-Gaussian in nature but gradually tends to

a Gaussian distribution which is obtained due to the chemiostatic condition of the

open system at NESS. It is evident from the figure that initially there is a non-zero

probability of observing negative values of ∆stot for a particular trajectory with

F = 30 pN whereas for F = 0 pN, such probability is zero for the rate parameters

considered here. We have found that with rise in the magnitude of the force, the

probability of observing negative values of ∆stot first increases but then saturates

(not shown in figures). Although the mean value can be obtained from the master

equation, the broadening of the distribution due to the increase in external force

can only be realized through the trajectory based method.

By comparing the distributions in Fig.4.9(a) and Fig.4.9(b) at different times,

one can see that the overall distribution quickly shifts to the positive zone reaching

larger positive values with increased force. These simulation results provide the

microscopic basis for the macroscopic result of the initially lower ∆Stot for higher

forces and explains how ∆Stot becomes higher for the same higher forces at some later

time. The larger probability for negative ∆stot values under the p(∆stot) distribution

curve at higher forces brings the average value, ∆Stot down at short times. Now

similar results are given in Fig.4.9(c) and Fig.4.9(d) for nT = 5. By comparing

these plots with those for nT = 20 reveals that for lower system size, there is a

larger probability to realize entropy consuming trajectories as here the distribution,

p(∆stot) can initially span larger negative regions, particularly at higher forces.

The total entropy production distribution for nT = 5 is always shifted to the left

compared to that for nT = 20 and this gives the microscopic basis of the extensive

nature of the entropy production.

With decrease in the system size the probability of obtaining the entropy con-

suming trajectories is increased. It is customary to have a finite region of the

distribution, p(∆stot) with negative values of ∆stot to explicitly show the detailed

fluctuation theorem at steady state[97]. Initially, with increase in the value of rate

parameter k2 increases the probability of finding the entropy consuming trajectories.

We have observed that in the ideal Michaelis-Menten type enzyme kinetics reaction

where k2 value is very very small, probability of obtaining the entropy consuming

trajectories is almost zero. It is also important to note that with increase in the val-

ues of force parameters, probability of entropy annihilating trajectories is increased

and that’s why we have verified the fluctuation theorem at force F=30 pN and F=

50 pN which is shown in Fig.4.10. We have plotted, ln p(∆stot)
p(−∆stot)

versus ∆stot in the

range −10 < ∆stot < 10 for nT = 20 in Fig.4.10(a) and (b) at F=30 pN and F= 50

pN, respectively and for nT = 5 in Fig.4.10(c) and (d) for the same force values. It

is evident from the figure that the total entropy production of the reaction system
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)

versus ∆stot is plotted in (a) and (b) for nT = 20 with

force, F=30 pN and F=50 pN, respectively. Similar plots are drawn in (c) and (d)
for nT = 5 with same force parameters.

satisfy the detailed fluctuation theorem at the steady state.
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Figure 4.11: (a) The mean and variance of the total entropy production distribution,
p(∆stot) as a function of the external force determined at the NESS. (b) The relative
variance is plotted against applied force at NESS. (c) The evolution of variance of
p(∆stot) with time for force F = 0, 10 and F = 30 pN.

From the simulation data, we also analyze the variance and the mean of the

total entropy production distribution, p(∆stot). The mean total entropy production

is obviously equal to the results already obtained from the analytical approach.

Now from Fig.4.11(a), we see that both the mean and the variance of p(∆stot),

determined at the NESS, first increases but then saturates with the applied force.

The saturation at large force is associated with almost instantaneous dissociation of

the ES-complex when the net rate of product formation reaches a limiting value with

an activationless transition[12]. The relative variance of the distribution decreases

with the external force at the NESS which is shown in Fig.4.11(b). It indicates that
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the higher force makes the system more deterministic. Due to the high dissociation

rate, a ES-complex breaks readily immediately after formation. So the population

of the occupied state mainly oscillates between 0 and 1 and the system behaves more

deterministically.

We have also shown the time evolution of the variance in Fig.4.11(c) at three

different forces, F = 0 pN, F = 10 pN and F = 30 pN. It is evident that except

some transient behavior, the variance increases linearly with time as the system

reaches and stays at the NESS. It amounts to the fact that the entropy production

distribution obeys a driven diffusion process at the NESS with a time-independent

diffusion coefficient which implies the variance of entropy production distribution

increases linearly with time for a particular value of applied force. The diffusion

coefficient increases with increase in force before going to saturation. The mean

and variance of the Gaussian distribution of the total entropy production at NESS

behaves almost in a similar fashion with the applied force.
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Figure 4.12: (a) Plot of total entropy production versus substrate at NESS with
force values F = 0 pN, F = 10 pN and F = 30 pN. (b) The evolution of net velocity,
vnet with substrate is plotted at NESS for same force values.

We have also calculated the total entropy production(ep) rate at NESS as a

function of the substrate population for different force values. The rate increases

with substrate population in a hyperbolic fashion as is usually observed both in the

bulk and single enzyme catalysis and the rise of force makes the ep rate larger. We

have compared this ep rate variation with the corresponding variation of the net

velocity of the reaction, vnet in Fig.4.12(a) and Fig.4.12(b). It is evident that vnet

rises with the substrate population and the applied force in a similar manner as that

of the ep rate. From Fig.4.8 and Fig.4.12, it is evident that reaction characteristics

follow the ∆Ssys curve as a function of time whereas at the NESS, they follow the

∆Stot curve as a function of the substrate population.
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4.5 Conclusion:

We have provided a master equation description of an immobilized single oligomeric

enzyme catalysis in a chemiostatic condition as is usually done in single molecule

enzymology. The dynamic and non-equilibrium steady state are characterized in

terms of the Michaelis-Menten parameters by the application of the master equation

of random hopping of the substrate molecules over the active sites of the single

oligomeric enzyme. In contrast to equilibrium solution of chemical master equation

for bulk reaction, which is a Poisson distribution with respect to the number of

molecules of each reactant, here also we obtain Poisson distribution with respect to

the number of active sites of the oligomeric enzyme in chemiostatic condition but in

NESS. So in the spirit of single molecule enzymology, single oligomeric enzyme with

large number of active sites or a few numbers of active sites with large Michaelis-

Menten constant gives a bulk-like analog in NESS.

Effect of external mechanical force on the reaction kinetics is again shown to

be another level of catalysis by mechanically manipulating the activation barrier.

The net rate of the reaction is not only multiplied by the number of active sites

of the oligomeric enzyme but also it is further enhanced by two to three orders

of magnitude with the application of external force of 10 − 100 pN through the

techniques of atomic force microscopy. Here the average number of occupied sites

decreases with increase in the value of applied force as the force decreases the height

of the energy barrier of dissociation process. However, at a critical value of the

applied force, the dissociation reaction becomes barrierless and consequently, above

this critical value of force, the net velocity of the reaction becomes force independent.

To understand the non-equilibrium thermodynamic behavior of the system, we

have also used the single stochastic trajectory approach of calculating the entropy

production with Gillespie’s stochastic simulation algorithm. We have thoroughly

analyzed the effect of the external force on the reaction characteristics like the net

velocity and the entropy productions. At the non-equilibrium steady state the rate

of the reaction and entropy production rate follow the similar hyperbolic trend with

substrate population for various forces. We have found that the time-variation of the

system entropy production is qualitatively similar to that of the average substrate

binding at different forces. From the single trajectory stochastic simulation data, we

have analyzed the evolution of the distribution of the total entropy production as a

function of time and the applied force. We have found that with increase in force, an

increased probability of entropy consuming trajectories can be obtained which be-

comes more prominent for lower system-size. All these results are constrained by the

detailed fluctuation theorem which maintains the corresponding entropy production

distribution.

The mean value of the distribution of entropy production obtained from the en-
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semble of single trajectories corresponds to the results obtained from the master

equation. However, it indicates a new effect of the external force on the distribution

of entropy production which is akin to power broadening of the distribution. The

variance of entropy production increases linearly with time for a particular value of

applied force indicating that the entropy production distribution obeys a a driven

diffusion equation at the NESS. Both the mean and the variance of the Gaussian

distribution of entropy production, determined at a particular instant of NESS, first

increases but then saturates with the rise in applied force. This is due to the in-

stantaneous dissociation of the ES-complex when the net rate of product formation

reaches a limiting value with a ‘barrierless’ transition. In mechanochemistry, an ex-

ternal force being another controllable thermodynamic variable over the traditional

variables of temperature and pressure, which can be used to find out the variance

of the entropy production in small systems where the fluctuation is as important as

the mean value.
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Chapter 5

Entropic estimate of cooperative
binding of substrate on a single
oligomeric enzyme

In this chapter, we have studied the cooperativity phenomena displayed by a

single oligomeric enzyme due to the different substrate binding mechanisms in a

chemiostatic condition and estimated the entropy production for the cooperative

binding schemes based on single trajectory analysis using a kinetic Monte Carlo

technique. To understand the nature of the cooperativity, we have also introduced

a cooperativity index defined in terms of the stochastic system entropy. In the in-

troductory section we have discussed about the goal of our study. Then in Section

5.2, we have given the master equations and their steady state solutions to describe

the spatial and temporal cooperative binding mechanisms and the corresponding

entropy production rates. In Section 5.3, we have discussed on measures of coop-

erativity and introduced an index of cooperativity. Numerical results of entropy

production and cooperative kinetics is discussed in Section 5.4. Finally the chapter

is concluded in Section 5.5.

5.1 Introduction

Conventional thermodynamics at or near equilibrium needs serious modification

to accommodate the events of single molecular processes as well as nano-systems

which are generally in states far away from equilibrium [58, 131, 132, 141, 142, 143,

144, 145, 146, 147]. The single molecule study is very important in biological systems

because most of the processes in cell are taking place on the level of a single or a

few molecules. The non-equilibrium feature is mainly developed within a cell due to

the mechanical or chemical stimuli which runs the metabolism through the driven

chemical reactions[80, 136]. Quantitative measure of fluctuations [83, 84, 86, 87, 88,

95, 133] in small system like a cell is possible over short periods of time that allow

87
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the thermodynamic concepts to be applied to such finite system. A crucial concept

in the statistical description of a non-equilibrium small system is that of a single

trajectory or path[83, 88, 84, 131] and defining the entropy of the system for such a

single trajectory allows one to formulate the second law of thermodynamics at the

stochastic level[80, 85, 134, 135, 136, 148]. Using this concept of trajectory-based

entropy production[135, 136, 148], it is now possible to describe the non-equilibrium

thermodynamic behavior of the single enzyme kinetics.

Enzyme kinetics is a very important process in cellular metabolism where the

non-equilibrium feature is developed due to the imbalanced chemical reactions and

the presence of chemiostatic condition which prevents the reaction system to attain

equilibrium [12, 64, 65, 66]. In a chemiostatic condition, substrate and product

are maintained at constant concentrations by continuous influx of the substrate

and withdrawing the product from the system. Under this condition, the reaction

system reaches at NESS[64, 65, 66], characterized by a non-zero total entropy pro-

duction rate. Now most of the enzymes found in enzymology are oligomeric in na-

ture consisting of two or more subunits usually linked to each other by non-covalent

interactions[34]. Possibility of interaction between the subunits during the substrate

binding process can give rise to positive, negative or no cooperativity phenomena

[34, 40, 91, 92, 149, 150].

In this chapter, we have studied the entropy production in the kinetics of a

single oligomeric enzyme which shows cooperativity with respect to the substrate

binding in the chemiostatic condition. We have classified the cooperativity phenom-

ena according to the nature of the different substrate binding mechanisms, namely,

sequential and independent, as detailed by Weiss[151]. In sequential binding, the

adjacent sites of the oligomeric enzyme are successively occupied by the substrate

molecules. So the substrate-bound states of the system are actually adjacent in

space and hence we denote the cooperativity arising out of this binding protocol

as the spatial cooperativity. For the sequential mechanism, the first binding site,

i.e, the first subunit of the oligomeric enzyme must be filled in order for the second

site to become occupied by the substrate, as if the substrate molecules have been

stacked on top of each other at their binding sites[151]. This type of binding can

be relevant to an ion transporter, such as the Na-K pump[152]. The other class

is called temporal cooperativity which can occur due to the independent binding

of the substrate molecules to any one of the subunits at a particular time without

any specific spatial arrangement. Here the substrate-bound sites are not physi-

cally neighboring in the enzyme [39] but the global state of the system is defined

in terms of the total occupancy of the overall sites at a particular instant of time.

This type of binding can be observed in multimeric proteins with individual bind-

ing sites located on different subunits, such as ligand gated ion channels or ligand

gated enzymes[151]. Here we have theoretically studied the cooperative behavior
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solely from the viewpoint of the substrate binding mechanism and not in terms of

the active and inactive enzyme conformations or the actual structural details of the

enzyme that can lead to such mechanisms [37, 38]. To study the bulk kinetics of

allosteric enzymes Monod, Wyman and Changeux (MWC) in 1965 and Koshland,

Nemethy and Filmer (KNF) in 1966 put forward models to account for coopera-

tive binding. Generally ‘Sequential’ is used as a term for a classical distinction

between multi-step binding models, as for instance differentiating between the KNF

and MWC models in terms of the variation of the substrate binding rates in each

successive step. So the term sequential in KNF model should not be confused with

the term sequential used in our approach [151, 153].

In what follows, we have constructed the master equations for each class of sub-

strate binding namely, the spatial and temporal model systems. Time evolution

of such cooperative systems can be described by suitably applying a kinetic Monte

Carlo technique[14, 15]. Here we have applied this algorithm to calculate the total,

medium and system entropy production along a single trajectory for such coop-

erative systems as a function of the substrate concentration over a time interval

where finally the system reaches a non-equilibrium steady state (NESS) and then

determined the ensemble average quantities over many realizations of such trajec-

tories. We show the correspondence between the evolution of the total and the

medium entropy production with the average substrate binding and net velocity of

the reaction in the context of detection of the cooperative behavior. Similarly this

correspondence is also studied for the total entropy production rate at the NESS.

The system entropy production is thoroughly studied in terms of the substrate bind-

ing probabilities for the different classes of cooperative systems considered. We have

introduced a cooperativity index, C defined in terms of the stochastic system entropy

to understand the nature of the cooperativity.

5.2 Cooperative binding, master equation and en-

tropy production rate

In this section, we have first classified the cooperativity of a single oligomeric enzyme

on the basis of the nature of the enzyme-substrate binding and then proposed a

stochastic description for each class in terms of a one-dimensional random walk

problem. Here we have provided a master equation approach for the description of

spatial and temporal cooperativity which is suitable for the calculation of entropy

production.
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5.2.1 Classes of cooperativity: spatial and temporal sub-
strate binding

Here we have considered that the substrate molecules can bind to the subunits

of the oligomeric enzyme sequentially or independently as already discussed in the

Introduction section of this chapter. In the oligomeric enzyme kinetics, the substrate

molecules bind to the subunits of the oligomeric enzyme in a stepwise manner with

different affinity which was first proposed by Adair to explain the cooperativity

phenomenon observed in the oxygen-binding to the hemoglobin at equilibrium[36].

If an oligomeric enzyme consists of nT number of homo or hetero type of subunits,

then at the chemiostatic condition the substrate-binding scheme of the enzyme can

be written as

E
K1

(0)

−−−⇀↽−−−
K2

(1)

ES1

K1
(1)

−−−⇀↽−−−
K2

(2)

......
K1

(n−1)

−−−−−⇀↽−−−−−
K2

(n)

ESn

K1
(n)

−−−−−⇀↽−−−−−
K2

(n+1)

......
K1

(nT −2)

−−−−−−⇀↽−−−−−−
K2

(nT −1)

ESnT−1

K1
(nT −1)

−−−−−−⇀↽−−−−−−
K2

(nT )

ESnT
.

(5.1)

Here ESn represents the conformational state of the oligomeric enzyme in which n

number of subunits are occupied by the substrate molecules. K1
(n−1) and K2

(n) are

designated as the total formation and total dissociation rate constants in the n-th

reaction step, respectively.

The above scheme of substrate binding of an oligomeric enzyme can be viewed

as a generalization of the kinetics of an enzyme having a single subunit given by

E + S
k1

′

−−⇀↽−−
k
−1

ES
k
−2

−−⇀↽−−
k2

′

E + P,

which can be further simplified as

E
K1−−⇀↽−−
K2

ES. (5.2)

Here K1 = (k1 + k2) and K2 = (k−1 + k−2), are designated as the total formation

and total dissociation rate constants of ES, respectively. The pseudo first-order

rate constants are written as k1 = k
′

1[S] and k2 = k
′

2[P] where [S] and [P] are the

constant substrate and product concentration in the chemiostatic condition. Hence

the site-dependent total formation and dissociation rate constants in the case of the

oligomeric enzyme kinetics are similarly defined as K1
(n−1) = (k1

(n−1) + k2
(n−1)) and

K2
(n) = (k−1

(n) + k−2
(n)) where k1

(n−1) = k′
1
(n−1)[S] and k2

(n−1) = k′
2
(n−1)[P].

The dynamics of the substrate binding mechanisms are quantified by counting the

number of occupied sites present in the oligomeric enzyme at a particular instant of

time. If at time t, ‘n’ number of occupied sites are present in the oligomeric enzyme

(the state ESn) then at time t+dt, the number of occupied sites may be increased or

decreased by one unit due to the occurrence of a formation or a dissociation reaction.

During the time evolution, the number of occupied sites is a fluctuating quantity.
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Figure 5.1: Kinetic schemes for (a) spatial and (b) temporal cooperativity with
site-dependent binding and dissociation rate constants. The numbers in the square
boxes denote the number of occupied sites. In spatial cooperativity (a), the forward
and backward transition probabilities depend only on the total formation and dis-
sociation rate constants, respectively. For temporal cooperativity (b), the forward
transition probability depends on the total formation rate constant and the number
of unoccupied sites, whereas the backward transition probability depends on the
total dissociation rate constant and the number of occupied sites.

Therefore, the system performs a one-dimensional random walk along the finite

number of states where state-n of the system is equivalent to the conformational

state ESn, as shown in Fig.5.1. The kinetic scheme of the spatially cooperative

system is given in Fig.5.1(a). As the subunits get occupied sequentially starting from

subunit-1, so when we say that the n-th subunit is occupied it automatically means

that n number of sites are occupied in total. Here the forward and the backward

transition probabilities depend only on the total formation and dissociation rate

constants K
(n)
1 and K

(n)
2 , respectively which are generally site-dependent. This is

so because after the filling of one subunit, there is no other choice for the next

substrate molecule but to fill up the next adjacent subunit and as this is true for all

the subunits, there is no combinatorial term in the transition probability.

The kinetic scheme for the temporal cooperativity is shown in Fig.5.1(b). Here

the substrate molecules can bind independently with any one of the nT number of
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subunits. The state-n of the system represents n-number of occupied sites of the

enzyme. In this mechanism, the forward transition probability of the n-th state at

time t is given by the product of the total formation rate constant K
(n)
1 with the

number of distinct combinations of unoccupied sites present at that time. Similarly,

the backward transition probability of the same state is the product of the total

dissociation rate constant, K
(n)
2 and the number of distinct combinations of occupied

sites present at time t (see Fig.5.1(b)). Here these rate constants are taken to be site-

dependent in general. If all the rate constants are site-independent, then the system

will be non-cooperative. The main difference of the sequential binding scheme from

the independent one is as follows: for the sequential scheme, the system will show

spatial cooperativity in substrate binding even when the formation and dissociation

rate constants are not site-dependent.

5.2.2 Master equations

For the time-dependent description of the spatial cooperativity, we have constructed

the corresponding master equation for this cooperativity mechanism as

∂Psp(n, t)

∂t
= K

(n−1)
1 Psp(n− 1, t) + K

(n+1)
2 Psp(n + 1, t)− (K

(n)
1 + K

(n)
2 )Psp(n, t), (5.3)

with K
(−1)
1 = K

(0)
2 = K

(nT)
1 = K

(nT+1)
2 = 0 to match the boundary terms. Here,

Psp(n, t) is the probability of having n number of occupied sites at time t. We have

given an analytical expression for the solution of the master equation by setting
∂Psp(n,t)

∂t
= 0. The steady state distribution of the spatial cooperativity is given by

Pss
sp(n) =

∏n−1
j=0 X(j)

∑nT

n=0

∏n−1
j=0 X(j)

, (5.4)

where X(j) =
K

(j)
1

K
(j+1)
2

=
k
′(j)
1 [S]+k

(j)
2

k
(j+1)
−1 +k

(j+1)
−2

with j = 0, 1, ..., (nT − 1). Here the steady state is

actually a non-equilibrium steady state (NESS) as already discussed. If X(j) = X∀j,

the NESS probability distribution becomes

Pss
sp(n) =

Xn(1 − X)

1 − X(nT+1)
, (5.5)

which is a geometric distribution. The average population of the occupied sites at

the NESS for X(j) = X∀j is given by

〈n〉 =

nT
∑

n=0

nPss
sp(n) =

X(1 − (nT + 1)XnT + nTXnT+1)

(1 − X)(1 − XnT+1)
. (5.6)

For temporal cooperativity, the master equation is written as

∂Ptemp(n, t)

∂t
= K

(n−1)
1 (nT − n + 1)Ptemp(n − 1, t) + K

(n+1)
2 (n + 1)Ptemp(n + 1, t)
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−K
(n)
1 (nT − n)Ptemp(n, t) − K

(n)
2 nPtemp(n, t), (5.7)

again with K
(−1)
1 = K

(0)
2 = K

(nT)
1 = K

(nT+1)
2 = 0. Solving this master equation at the

NESS, we can obtain the probability distribution as

Pss
temp(n) =

(

nT

n

)

∏n−1
j=0 X(j)

∑nT

n=0

(

nT

n

)

∏n−1
j=0 X(j)

, (5.8)

where X(j) =
K

(j)
1

K
(j+1)
2

as already defined with j = 0, 1, ..., (nT−1). The average number

of occupied sites at the NESS is simply expressed as

〈n〉 =

∑

n n

(

nT

n

)

∏n−1
j=0 X(j)

∑nT

n=0

(

nT

n

)

∏n−1
j=0 X(j)

. (5.9)

Now positive cooperativity in this scenario means a higher affinity of a second

substrate molecule to attach with the oligomeric enzyme compared to that of the

first substrate molecule which is already bound and so on. Therefore, in this case,

the successive binding affinity of the substrate molecule increases. So naturally here

we take the binding rate constants, k
(n)
1 as follows [151, 154]

k
(0)
1 < k

(1)
1 .... < k

(n)
1 < k

(n+1)
1 < .... < k

(nT−1)
1 . (5.10)

Here the site-dependent overall association rate constant K
(n)
1 is defined as K

(n)
1 =

k
(n)
1 + k

(n)
2 and similarly, the overall site-dependent dissociation rate constant is

written as K
(n)
2 = k

(n)
−1 + k

(n)
−2. We take the rate constants k

(n)
−1 , k

(n)
2 and k

(n)
−2 to be

site-independent. This is due to the fact that to get a cooperative behavior for the

independent binding case, it is not necessary to take all the rate constants of the

reaction system to be site-dependent that will also make the results obtained hard to

analyze. Then the site-dependent quantities X(j) for positive cooperativity maintain

the relation:

X(0) < X(1).... < X(n) < X(n+1) < .... < X(nT−1). (5.11)

Similarly, negative cooperativity arises as a second substrate molecule binds to

the oligomeric enzyme with a lower affinity than that of the first substrate molecule.

Therefore, the substrate binding reaction rate constants for different sites obey the

inequalities [34, 93, 149]

k
(0)
1 > k

(1)
1 .... > k

(n)
1 > k

(n+1)
1 > ... > k

(nT−1)
1 . (5.12)

Then taking the rate constants k
(n)
−1 , k

(n)
2 and k

(n)
−2 as site-independent constants, we

have

X(0) > X(1).... > X(n) > X(n+1) > .... > X(nT−1). (5.13)
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If all the association and dissociation rate constants are site-independent, then

the enzyme becomes non-cooperative. Thus the steady state distribution, Eq.(5.8)

reduces to

Pss(n) =

(

nT

n

)

Xn

(1 + X)nT
, (5.14)

where X = K1

K2
. By inserting the value of X, the above equation can be written as a

binomial distribution given by

Pss(n) =

(

nT

n

) (

K1

K1 + K2

)n (

K2

K1 + K2

)(nT−n)

= P(bino)(n). (5.15)

This is expected, as in the absence of any cooperativity, the distribution of the occu-

pied sites must follow a binomial distribution. So for a system with no cooperativity,

the average number of occupied sites at the NESS is

〈n〉 = nT

(

X

1 + X

)

= nT

(

K1

K1 + K2

)

(5.16)

and the average number of unoccupied sites is

〈nT − n〉 = nT

(

K2

K1 + K2

)

. (5.17)

We mention that, in addition to the overall association and dissociation rate con-

stants being site-independent, if the rate constant k2 is also negligibly small, then the

enzyme kinetics becomes simply the Michaelis-Menten type. If k
(j)
2 (j = 0, . . . , (nT−

1)) is taken to be much less than the other rate constants, then we have

X(j) =
[S]

K
(j)
M

, (5.18)

where K
(j)
M =

k
(j+1)
−1 +k

(j+1)
−2

k
′(j)
1

can be described as the stepwise Michaelis-Menten constant.

5.2.3 Entropy production rates

The system entropy is defined in terms of the Shannon entropy as

Ssys(t) = −kB

∑

n

P(n, t)lnP(n, t), (5.19)

where P(n, t) is the probability of having n number of occupied states at time t with

P(n, t) ≡ Psp(n, t) or P(n, t) ≡ Ptemp(n, t). Here we set the Boltzmann constant,

kB = 1. Using the master equation, one can get the system entropy production rate

[13, 74, 100, 101] as

Ṡsys(t) =
1

2

∑

n,µ

[wµ(n − νµ|n)P(n − νµ, t) − w−µ(n|n − νµ)P(n, t)]



95

×ln
P(n − νµ, t)

P(n, t)
. (5.20)

Here the state of the system can change by any one of the four reactions, denoted

with index µ, via which the substrate and the product molecules can bind with

the enzyme sites and detach. They are given as: (1) (ESn + S)
k
(n)
1→ (ESn+1) (µ =

1), (2)(ESn)
k
(n)
−1
→ (ESn−1 + S) (µ = −1), (3)(ESn)

k
(n)
−2
→ (ESn−1 + P) (µ = −2) and

(4)(ESn + P)
k
(n)
2→ (ESn+1) (µ = 2). Here νµ is designated as the stoichiometric

coefficient of the µ-th reaction with rate constant kµ where νµ = 1 with µ > 0 and

−νµ = 1 with µ < 0. The transition probabilities are defined as follows

wµ(n − νµ|n) = k(n−νµ)
µ (nT − (n − νµ)), µ > 0

and

wµ(n − νµ|n) = k(n−νµ)
µ (n − νµ), µ < 0. (5.21)

We have assumed ideal reservoir(surroundings) with no inherent entropy produc-

tion except through the boundaries of the system. The system entropy production

rate(epr) can be split as[100]

Ṡsys(t) = Ṡtot(t) − Ṡm(t). (5.22)

Here the first term in the r.h.s. of Eq.(5.22) gives the total entropy production rate

and the second term denotes the medium entropy production rate due to the entropy

flux into the surroundings. Therefore the total and medium entropy production rates

are defined as

Ṡtot(t) =
1

2

∑

n,µ

[wµ(n − νµ|n)P(n − νµ, t) − w−µ(n|n − νµ)P(n, t)]

× ln
wµ(n − νµ|n)P(n − νµ, t)

w−µ(n|n − νµ)P(n, t)
(5.23)

and

Ṡm(t) =
1

2

∑

n,µ

[wµ(n − νµ|n)P(n − νµ, t) − w−µ(n|n − νµ)P(n, t)]

× ln
wµ(n − νµ|n)

w−µ(n|n − νµ)
. (5.24)

At steady state, Ṡsys = 0 (whether equilibrium or NESS). An NESS is character-

ized by a non-zero total epr given by

Ṡ
(NESS)
tot =

∑

n

[w1(n − 1|n)P(n − 1) − w−1(n|n − 1)P(n)]

×ln

(

w1(n − 1|n)P(n − 1) × w−2(n|n − 1)P(n)

w−1(n|n − 1)P(n) × w2(n − 1|n)P(n − 1)

)

. (5.25)
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This equation is derived using the circular balance condition [11]

w1(n − 1|n)P(n − 1) − w−1(n|n − 1)P(n) =

w−2(n|n − 1)P(n) − w2(n − 1|n)P(n − 1). (5.26)

Now here we consider two limiting situations.

(i) It is clear that if we do not consider the presence of the product species then

there will be just two sets of rate constants, k
(n)
1 and k

(n)
−1 . Then at the steady state,

the balance condition that holds is obviously the detailed balance which gives

w1(n − 1|n)P(n − 1) − w−1(n|n − 1)P(n) = 0.

Then from Eq.(5.25), we have Ṡtot = 0 at the steady state which is reduced now to

an equilibrium. Now from Eq.(5.18), the quantity X(j) under this condition becomes

X(j) =
k
′(j)
1 [S]

k
(j+1)
−1

where
k
′(j)
1

k
(j+1)
−1

are the stepwise equilibrium (binding) constants. So in this

limit, theoretically there is no difference between our model and a protein-ligand

binding model which generally does not consider the product formation.

(ii) Another interesting point is that if we consider the case where k
(n)
1 , k

(n)
−1 >>

k
(n)
−2 (with k

(n)
2 being already considered negligible) then this corresponds to the pre-

equilibrium limit or simply the equilibrium limit. The assumption is valid when

fast reversible reactions precede slower reactions in a reaction network. Now in

this situation also, the quantity X(j) is defined in terms of the stepwise equilibrium

(binding) constants. In this context, we mention that the original derivation of

the enzyme catalysis reaction by Michaelis and Menten involved the pre-equilibrium

assumption with the equilibrium dissociation constant parameter. The more general

derivation by Briggs and Haldane used the steady state approximation and their

expression contained the actual Michaelis-Menten constant. In our case also we see

the same features in the quantity, X(j) which is the parameter of our model study.

In the general non-equilibrium case, X(j) is related to the stepwise Michaelis-Menten

constant, K
(j)
M (see Eq.(5.18) with k

(j)
2 considered negligible) whereas in the absence

of product species leading to equilibrium or under the pre-equilibrium assumption,

X(j) is related to the stepwise equilibrium (binding) constant,
k
′(j)
1

k
(j+1)
−1

.

5.3 Measure of cooperativity

Here we have discussed on the determination of the Hill coefficient from the master

equation corresponding to the different binding schemes. We have also introduced an

index of cooperativity in terms of the stochastic system entropy associated with the

fully bound state of the cooperative and non-cooperative cases. We have analyzed

its connection to the Hill coefficient using some relevant experimental data which

gives a realistic application of the proposed scheme of measurement of cooperativity.



97

5.3.1 Hill coefficient

In the traditional enzymology, the characterization of cooperativity is carried out

by measuring the Hill coefficient [34]. For positive and negative cooperative cases,

the Hill coefficient becomes greater than or less than one, respectively, whereas the

non-cooperative case is characterized with Hill coefficient equal to one. Experimen-

tally it is obtained by determining the fractional saturation, θ(= 〈n〉/nT) at various

substrate concentrations [S], constructing the Hill plot (ln( θ
1−θ

) vs. ln[S]) and then

finding the slope at the half-saturation point, θ = 0.5 or at a point where the slope

deviates maximum from unity. On the other hand, Hill coefficient is theoretically

defined as the ratio of the variances of the binding number of the cooperative and

non-cooperative cases at the half-saturation point with the non-cooperative binding

case following the binomial distribution[150, 155].

We briefly mention the features of the Hill plot for the model binding schemes

studied here. The slope of the Hill plot is generally given by [150]

H =
[S](dθ/d[S])

θ(1 − θ)
. (5.27)

For temporal cooperativity, the fractional saturation can be written as (see Eq.(5.9))

θtemp =

∑

n nBn[S]n

nT

∑

n Bn[S]n
, (5.28)

where Bn =
(

nT

n

)
∏n−1

j=0 (K
(j)
M )−1 with B0 = 1. Then one gets

Htemp =
〈n2〉 − 〈n〉2

nTθ(1 − θ)
=

σ2
temp

σ2
bino

, (5.29)

where σ2
temp and σ2

bino are the variances of the binding numbers of the temporal

and non-cooperative cases, respectively. The Hill coefficient, nH is given at the

half-saturation point as[150] nH =
4σ2

temp

nT
. Similar expressions hold for the spatial

cooperative binding. We have already mentioned in Sec.IIB that if all the rate

constants of the independent binding scheme are site-independent, then the binding

is non-cooperative with binomial distribution of the binding probability. Here we

discuss the corresponding scenario for the sequential binding (leading to spatial

cooperativity) to be non-cooperative in terms of the variance of the binding number.

In the case of spatial cooperativity, the variance of the binding number, σ2
sp is given

by

σ2
sp =

(1 + X

1 − X

)

〈n〉 − 〈n〉2 −
nT(nT + 1)XnT+1

1 − XnT+1
, (5.30)

where X and 〈n〉 are as given in Eq.(5.5) and Eq.(5.6). Now for nT = 1, this reduces

to

σ2
sp =

X

(1 + X)2
= σ2

bino. (5.31)
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and then the slope of the Hill plot becomes Hsp =
σ2
sp

σ2
bino

= 1 for any substrate

concentration. So for sequential binding, the cooperative behavior is absent only if

the enzyme is monomeric.

5.3.2 Cooperativity index

Here we introduce an index of cooperativity. First we build up the concept from

binding probabilities and then demonstrate how this index can indicate the nature of

the cooperativity. For positive cooperative binding, one expects that full occupancy

of the enzyme is more probable compared to the case of non-cooperativity. Similarly,

for negative cooperativity, the full occupancy of the enzyme is less probable. Now, if

the probability of an event-n is pn, then the associated surprisal is given by −ln(pn)

and more probable the event, the less is its surprisal. So the ratio of the surprisals,

associated with the probability of the system to remain in a fully occupied state

without and with cooperativity at NESS, should be greater than 1 for positive

cooperativity and less than 1 for negative cooperativity. Hence we define the index

of cooperativity, denoted by C in terms of the ratio of the surprisals, associated with

the probability of the system to remain in a fully occupied state without and with

cooperativity at NESS as

C =
−ln(P(bino)(nT))

−ln(Q(nT))
(5.32)

where the binomial distribution, P(bino) is the reference corresponding to the non-

cooperative case and the distribution Q corresponds to the cooperative binding case.

The rate constants of the reference non-cooperative system (binomial) must be the

same as those of the starting or initial rate constants of the cooperative system for

the comparison to be valid. The relation is then independent of the actual value of

the (constant) substrate concentration. We point out that the surprisal is equivalent

to the single trajectory stochastic system entropy[85, 99] (associated with the fully

occupied state). So the index, C is truly an entropic estimate of cooperativity at

the microscopic level.

Based on the above argument, next we theoretically analyze the probability to

remain in a fully occupied state for different cooperative systems and compare that

with the non-cooperative case to formulate the criteria of cooperativity in terms of

C. For spatial cooperativity, the ratio of its steady state distribution (Eq.(5.5)) and

the reference binomial distribution (Eq.(5.14)) for n = nT is given by

Rsp =
Pss

sp(nT)

P(bino)(nT)

= 1 +

[(

(

nT

1

)

−
(

nT

0

)

)

X +
(

(

nT

2

)

−
(

nT

1

)

)

X2 + . . . +
(

(

nT

nT

)

−
(

nT

nT−1

)

)

XnT

]

(1 − XnT+1)
. (5.33)
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From the above expression it is clear that for all values of X, either greater than

or less than 1, the quantity Rsp is greater than 1 indicating positive cooperativity.

This will lead to the condition C > 1 for the case of spatial cooperativity for any

substrate concentration. Only in the case of monomeric enzyme, (nT = 1), the

system will be non-cooperative with Rsp = C = 1 as already discussed in terms of

variances at the end of Section 5.3.1.

In the case of temporal cooperativity, the corresponding ratio, Rtemp is given

using Eq.(5.8) and Eq.(5.14) at n = nT as

Rtemp =
Pss

temp(nT)

P(bino)(nT)

=

[

X(0)X(1)...X(nT−1)

[1+nTX(0)+...+(X(0)X(1)...X(nT−1))]

XnT

(1+X)nT

]

=

[ (X(0))nT f(nT−1)

[1+nTX(0)+...+(X(0))nT f(nT−1)]

(X(0))nT

[1+nTX(0)+...+(X(0))nT ]

]

, (5.34)

with X(0) = X. Now both Pss
temp(nT) and P(bino)(nT) tend to 1 at large X(0) i.e. large

substrate concentration. But it is clear that for positive cooperative binding with

f > 1, the last term in the denominator of Pss
temp(nT) dominates the previous terms

more readily compared to the case of P(bino)(nT). Hence at a particular substrate

concentration, Pss
temp(nT) is closer to 1 compared to P(bino)(nT) and so Rtemp is greater

than 1. For negative cooperativity with f < 1, the situation is obviously reverse and

Rtemp is less than 1. Therefore, in the light of the above discussions and Eq.(5.32),

we write down the condition of cooperativity in terms of C as

C







> 1, positive cooperativity
= 1, no cooperativity
< 1, negative cooperativity.

(5.35)

This is the same criteria of cooperativity as given in terms of the Hill coefficient. To

find out the Hill coefficient, i.e., the variances theoretically, it is necessary to know

the probability distribution of the corresponding positive and negative cooperativity

cases, respectively. Now our measure of cooperativity, the index C, is also related

to the probability distributions; but it is defined in terms of the ratio of a specific

term of the distributions, namely the probability of the fully occupied state. So

apparently there is no straightforward connection between the Hill coefficient and

C. The Hill coefficient is the slope of the binding curve at a particular substrate con-

centration corresponding to the half-saturation point whereas the index C is defined

independent of the substrate concentration and the characterization of cooperativity

in terms of C is valid at any substrate concentration.
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5.3.3 Estimate of the limiting value of the cooperativity in-
dex, C for various cooperative binding

Here the limiting value of the cooperativity index, C for the spatial and temporal

cooperative binding are determined at high substrate concentration. The limiting

value of the cooperativity index, C for the spatial cooperativity is calculated from

Eq.(5.32) by using the steady state probability distribution function of spatial co-

operativity, Pss
sp(n) (Eq.(5.5)) and that of no cooperativity, Pss

bino(n) (Eq.(5.14)) at

n = nT. The expression of C then becomes

C =
−ln

[

( X
1+X

)nT
]

−ln
[

XnT (1−X)

1−X(nT+1)

] . (5.36)

At high substrate concentration, with X >> 1, the above equation can be written

as

C =
nTln(1 + 1

X
)

−ln(1 − 1
X
)
. (5.37)

Now expanding the log terms in the Eq. (5.37) and neglecting the higher order

terms, we finally obtain

C = nT. (5.38)

Therefore, the limiting value of C in the case of spatial cooperativity, obtained

at high substrate concentration, is equal to the total number of sub-units of the

oligomeric enzyme.

In a similar fashion, the limiting value of C can be calculated for the tempo-

ral cooperativity from Eq.(5.32) by using the steady state probability distribution

function of temporal cooperativity, Pss
temp(n) (Eq.(5.8)) and that of no cooperativ-

ity, Pss
bino(n) (Eq.(5.14)) at n = nT. At this value the distribution, Pss

temp(n) can be

written as

Pss
temp(nT) =

X(0)X(1)...X(nT−1)

[1 + nTX(0) + ... + (X(0)X(1)...X(nT−1))]
. (5.39)

Here X(j) ≈ f(j)X(0) with j = 0, ..., (nT − 1). This follows from the definition of X(j)

(see Eq.(5.8) and Eq.(5.4)) with the small value of k−2 taken in this study. Now at

high substrate concentration with X(0) >> 1, the above equation can be written as

Pss
temp(nT) =

1

[1 + nT

X(0)f(nT−1) ]
. (5.40)

Now, by using the value of Pss
temp(nT) and Pss

bino(nT) into the Eq.(5.32) at high

substrate concentration, we obtain

C =
nTln(1 + 1

X
)

ln[1 + nT

X(0)f(nT−1) ]
. (5.41)
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For the comparative study of the temporal and non-cooperative cases, the starting

value, X(0) is taken equal to X. Then expanding the log terms in the above equation

and neglecting the higher order terms, we finally obtain the limiting value of C for

temporal cooperativity as

C = f(nT−1) =
k

(nT−1)
1

k
(0)
1

. (5.42)

Here we mention that for the negative cooperative binding, f(nT−1) can be much less

than 1 in general. But here we consider the case X(0)f(nT−1) >> 1.

5.4 Numerical simulation of entropy production

In this section, we have calculated the medium, system and the total entropy

production for the spatial and temporal cooperative systems. For a given initial

condition, the oligomeric enzyme system reaches NESS at a particular time which

depends on the chemiostatic condition, i.e, the value of the constant substrate con-

centration. The initial condition is taken as the fully unbound state of the enzyme

with all the subunits being vacant i.e., P(n, t = 0) = δn,0. This condition leads

to zero system entropy at t=0. For the time-dependent system entropy production

calculation in general, one needs the time-dependent solution of the master equa-

tion, P(n, t). But here the final time in the calculation of the entropy production

over the time interval (starting at t = 0 with the specified initial condition above)

is taken such that by then the system reaches the NESS and hence steady state

solutions are all we need to get the system entropy production over the length of

the trajectory. The total entropy production for a single trajectory is calculated

over the time interval where the determination of the medium entropy production

requires the detailed information of the path and not just the initial and final points.

We run the simulations in all the cases up to a fixed point of time taken to be the

same for all the binding mechanisms. As the steady state is an NESS (and not an

equilibrium), total and medium entropy production increase linearly with time and

hence if the final point of time is not the same for all the cases, one can not compare

the various entropy production values for the different cooperative systems.

5.4.1 Implementation of the scheme of single trajectory stochas-
tic simulation

Along a single stochastic trajectory the system entropy production can be defined

as[135] S(t) = −ln p(n, t), where p(n, t) is the solution of the stochastic master

equation for a given initial condition, p(n0, t0), taken along the specific trajectory

n(t). Note that, the single trajectory entropy is denoted by (bold) S whereas the

trajectory-average entropy production (equivalent to ensemble average) is denoted

by S. Now at the microscopic level, the number of occupied sites of the oligomeric
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enzyme becomes a fluctuating quantity due to the random occurrence of the differ-

ent reaction events within the random time interval. This develops the concept of

different trajectories. Here the state of the system can change by any one of the

four reactions (denoted with index µ) as discussed in Sec.IIC.

A stochastic trajectory, χ(t) starting at the state n0, jumping at times tj from

the state nj−1 to the state nj and finally ending up at nl with t = tl is defined as,

n(t) ≡ (n0, t0)
νµ

(1)

→ (n1, t1)
ν
(2)
µ

→ .....
νµ

(j)

→ (nj, tj) → ... → (nl−1, tl−1)
νµ

(l)

→ (nl, tl). (5.43)

Here nj = nj−1 + ν
(j)
µ where ν

(j)
µ is the stoichiometric coefficient of the µ-th reaction

along a trajectory and tj = tj−1 + τj where τj is the time interval between two

successive jumps. During the jump from the (nj − 1) state to the nj state, any one

of the four reactions will occur (see Eq. (5.1) and Eq. (5.2)). The rate constant of

the reaction µ is denoted as kµ. The time interval τj between the two jumps is a

random variable following the exponential distribution[14, 15]

p(τj) = a exp(−aτj) (5.44)

with a =
∑±2

µ=±1 w(nj − 1; νj
µ). Here w(nj−1; ν

(j)
µ ) denotes the forward transition

probability from the state (nj − 1) to the state nj through a reaction channel µ with

the stoichiometric coefficient ν
(j)
µ .

Now a time reversed trajectory can be defined as,

nR(t) ≡ (nl, tl)
−νµ

(l)

→ (nl−1, tl−1)
−νµ

(l−1)

→ ... → (nj, tj)
−νµ

(j)

→ ... → (n1, t1)
−νµ

(1)

→ (n0, t0).

(5.45)

This time reversed trajectory is generated due to the occurrence of a reaction channel

whose state changing vector −ν
(j)
µ is exactly opposite to the state changing vector

ν
(j)
µ of the forward reaction channel.

The time-dependent total entropy production, ∆Stot along a trajectory can be

split into a system part, ∆Ssys and a medium contribution, ∆Sm. Hence the change

of total entropy along a trajectory can be written as [135]

∆Stot = ∆Sm + ∆Ssys (5.46)

where

∆Ssys = ln
p(n0, t0)

p(n, t)
(5.47)

and

∆Sm =
∑

j

ln
w(nj−1; ν

(j)
µ )

w(nj;−ν
(j)
µ )

. (5.48)

Here w(nj−1; ν
(j)
µ ) denotes the forward transition probability as already defined. Sim-

ilarly, w(nj;−ν
(j)
µ ) denotes the backward transition probability from the state nj to

the (nj − 1) state through a reaction channel µ with the exactly opposite stoichio-

metric coefficient −ν
(j)
µ .
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5.4.2 Cooperative kinetics

To simulate the spatial cooperativity associated with the sequential binding, we

have taken the site-independent reaction rate constants as k
′

1 = 0.015 µM−1s−1 and

k−1 = 7.0, k−2 = 2.0, k2 = 0.001, all in s−1. The substrate concentration is taken in

µM unit. The total number of subunits present in the oligomeric enzyme is taken

as nT = 3. We have calculated the various entropy productions using the stochastic

simulation for single trajectories over a time interval starting from the initial condi-

tion to a final time as mentioned above. We have taken 2×105 trajectories to get the

ensemble average of the entropy production values. We have calculated the average

binding number, 〈n〉 for this case from Eq.(5.6) and the net product formation rate

by using the formula, vnet = k−2〈n〉−k2〈nT −n〉, at the final time where the system

resides at the NESS. We have plotted these quantities as a function of the substrate

concentration in Fig.5.2(a) and (b). It is clear from the plots that both the quanti-

ties grow with a sigmoidal shape as a function of substrate concentration indicating

positive cooperativity in substrate binding. According to Eq.(5.6), this is due to the

higher power (> 1) dependence of 〈n〉 on the factor X which is proportional to the

substrate concentration. As the rate constants are taken as site-independent, the

positive cooperativity generated in the system is inherent in the binding mechanism.

Now we have plotted ∆Stot and ∆Sm, both being ensemble averages taken over the

2 × 105 realizations of the trajectories, in Fig.5.2(c) and (d), respectively, against

the substrate concentration. Interestingly, we find the nature of both the curves to

be sigmoidal.

Next we come to the case of independent substrate binding that can give rise

to the case of temporal cooperativity with site-dependent reaction rate constants.

To simulate the entropy production for the positive cooperative system, we take the

rate constants of successive substrate binding steps as (see Eq.(5.10)): k
(1)
1 = f(1)k

(0)
1

and k
(2)
1 = f(2)k

(0)
1 , where k

(0)
1 = k

′(0)
1 [S] with k

′(0)
1 = 0.015 µM−1s−1. The set

{k
′(0)
1 , k−1, k−2, k2} is called the starting or initial rate constants of the cooperative

system. For the simulation, here we take f(1) = 10 and f(2) = 100, i.e., a 10-fold in-

crease in substrate binding rate constants in each step. The other rate constants are

site-independent and taken to be the same as in the case of the spatial cooperativity.

We also calculate the average binding number using Eq.(5.9) and the net product

formation rate, at the NESS. They are shown in Fig.5.3(a) and (b) along with the

total and the medium entropy production in Fig.5.3(c) and (d), respectively, all as

a function of the substrate concentration. It is evident from the figure that all the

curves show a significant sigmoidal behavior indicating the positive cooperativity.

We have also given the corresponding quantities in the case of non-cooperativity

in the same plot for comparison. The non-cooperative case is simulated with site-

independent rate constants same as in the case of the spatial cooperativity. In this

case 〈n〉 is determined using Eq.(5.16). We see that in this case also, the nature of
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Figure 5.2: (a) 〈n〉 and (b) vnet for the spatial cooperative (sequential) binding as a
function of substrate concentration, [S] (in µM unit) at the NESS. (c) and (d) exhibit
the corresponding ∆Stot and ∆Sm variations with [S]. The entropy productions are
calculated over a time interval that starts with the given initial condition (see text)
and ends with the system at the NESS.

variation of 〈n〉, vnet, ∆Sm and ∆Stot with the substrate concentration is the same,

hyperbolic to be specific.

Now we come to the last case in this category, i.e., the negative cooperativity.

In this case, the rate constants of the substrate binding reaction are taken as (see

Eq.(5.12)): k
′(0)
1 = 1.5 µM−1s−1, k

(1)
1 = f(1)k

(0)
1 and k

(2)
1 = f(2)k

(0)
1 with the values

of the factors being f(1) = 0.1 and f(2) = 0.01, i.e., a 10-fold decrease in substrate

binding rate constant in each step. The other rate constants are taken as in the

previous cases. The value of k
′(0)
1 is taken to be 100 times greater compared to the

cases of spatial and positive cooperativity. This is only for the demonstration of

the negative cooperativity effect on the binding curves of the reaction. We have

plotted 〈n〉 against substrate concentration in Fig.5.4(a) for the negative as well

as the non-cooperative case. Here for the non-cooperative case also we have taken

k
′(0)
1 = 1.5 µM−1s−1. Both the curves show the hyperbolic nature. The two cases are

distinguished by plotting 1
〈n〉

versus 1
[S]

which is the Lineweaver-Burk plot. For non-

cooperative enzyme, this plot gives a straight line whereas the curve for the negative

cooperative binding starts at a higher value on the y-axis and becomes nonlinear

when it comes close to the curve of the non-cooperative system at high substrate

concentration. This feature is shown in Fig.5.4(b). Now we have plotted similar

curves for ∆Stot in Fig.(5.4(c) and (d). One can see the same hyperbolic nature

in the plot of ∆Stot versus substrate concentration (Fig.5.4) for both the cases and



105

0 100 200
[S]

0

2.5

5

<
 n

 >

0 100 200
[S]

0

3

6
+ ve co-operativity
no co-operativity

0 100 200
[S]

0

100

200

0 100 200
[S]

0

100

200

∆
S m

∆
S

to
t

V n
et

a) b)

c) d)

Figure 5.3: (a) 〈n〉 and (b) vnet for the temporally cooperative (independent) binding
with positive cooperativity against substrate concentration, [S] (in µM unit) at the
NESS. (c) and (d) give the corresponding ∆Stot and ∆Sm variations with [S]. The
entropy productions are calculated over a time interval as described in the caption of
Fig.5.2. It is evident from the figure that all the curves show a significant sigmoidal
behavior indicating the positive cooperativity.

the nonlinearity in the plot of 1
∆Stot

versus 1
[S]

at high substrate concentration for

the negative cooperativity (Fig.5.4(d)). So from the above discussion and the plots,

we conclude that the familiar indications of the cooperative behavior in substrate

binding, given in terms of the nature of variation of the average binding number and

the net velocity of the reaction as a function of the substrate concentration, are all

reflected in the same manner in the corresponding variation of the total as well as

the medium entropy production.

We have also calculated the total entropy production rate, Ṡtot at the NESS

using Eq.(5.25) for all the cases of cooperativity . Here we have taken the same

set of rate constants as we have already considered to calculate the various entropy

productions. The variations of Ṡtot with substrate concentration, [S] for different

binding schemes are shown in Fig.5.5. It is evident from the figure that the features

of cooperative binding are also reflected in a similar fashion on the variation of Ṡtot

with substrate concentration.
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Figure 5.4: Plots of (a) 〈n〉 vs. [S] (in µM unit) and (b) 1
〈n〉

vs. 1
[S]

at the NESS.

(c) ∆Stot vs. [S] and (d) 1
∆Stot

versus 1
[S]

for negative cooperative (temporal) as well
as non-cooperative binding. The entropy productions are calculated over a time
interval as described in the caption of Fig.5.2.
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for comparison. (d) Plot of 1
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negative and non-cooperative cases.



107

0 500 1000
[S]

0

1

2

0 100 200
[S]

0

1

2

0 1500 3000
[S]

0.7

0.8

0 2000 4000
[S]

0

1

2

∆
S

sy
s

∆
S

sy
s

∆
S s

ys

∆
S

sy
s

a) b)

c) d)

Figure 5.6: Plot of ∆Ssys against substrate concentration, [S] (in µM unit) for (a)
spatial cooperative binding, (b) positive (temporal) cooperative binding, (c) negative
(temporal) cooperative binding and (d) non-cooperative binding. In all the cases,
the final time of observation is the same, set as such that the system reaches the
NESS.

5.4.3 System entropy production and binding characteris-
tics

The ensemble or trajectory average system entropy production over the time interval

can be written as

∆Ssys = Sfinal
sys − Sinitial

sys = −

nT
∑

n=0

Pss(n)lnPss(n), (5.49)

where the initial condition (time t = 0) of the fully unbound enzyme gives Sinitial
sys =

0 and the final state of the system is an NESS characterized by the distribution

Pss(n). We have plotted the ensemble average system entropy production, ∆Ssys as

a function of the substrate concentration in Fig.5.6 for all the cases. In Fig.5.6(a),

∆Ssys is plotted for spatial cooperativity and in Fig.5.6(b-d) it is shown for the

positive, negative and non-cooperative cases, respectively which belong to the class

of temporal cooperativity. The first thing evident from the plots is that ∆Ssys passes

through a global maximum for all the cases and in the case of negative cooperativity,

there is also a local maximum with the parameters of our system.

We have plotted Pss(n) as a function of the substrate concentration in Fig.5.7(a-

d) with the steady state (‘ss’) superscript being dropped for simplicity. Fig.5.7(a)

shows the curves for spatial cooperativity. We can see that they all cross almost

exactly at the same point, [S] ∼ 600 µM giving rise to the maximum in ∆Ssys for

spatial cooperativity at this point (see Fig.5.7(a)). In Fig.5.7(b), we have shown the
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curves for the positively cooperative system. At [S] ∼ 60 µM, the curves cross in a

pairwise fashion; curves of P(0) and P(3) cross each other at this point as well as

curves for P(1) and P(2). This particular substrate concentration corresponds to

the maximum of ∆Ssys in this case (see Fig.5.7(b)).

The case of negative cooperativity requires a bit more attention. There is again

pairwise curve crossing of the two sets of probabilities same as in the case of positive

cooperativity at the same substrate concentration shown in Fig.5.7(c). This gives

rise to the global maximum in the curve of ∆Ssys for this type of binding shown

in Fig.5.6(c). The local maximum can be explained as follows. Unlike the plots

in Fig.5.7(a) and (b), the probability curves P(2) and P(3) remain at significant

values over the substrate range studied and the dominance of these two probability

curves in Fig.5.7(c) (actually when P(2) and P(3) cross, they are close to 0.5 at

[S] ∼ 1800 µM) over a large substrate range gives rise to an increase of ∆Ssys, albeit

slow. Finally we come to the case of non-cooperativity in Fig.5.7(d) where again

there is the pairwise crossing of the same set of probabilities as in Fig.5.7(b) but at

[S] ∼ 600 µM that again gives rise to the maximum of ∆Ssys shown in Fig.5.6(d).

In this case too, there are more than one dominating probability curves before and

after the pairwise crossing over similar substrate range as in Fig.5.7(c). But the

∆Ssys in this case shows a slow but steady decrease with substrate concentration

after passing through the maximum without any unusual behavior. This may be

due to the fact that here at least three of the four probabilities are significant (with

comparable values) over a large substrate range and so they do not cross the value

of 0.5 in this range unlike the case in Fig.5.7(c). It is clear that arbitrary variation of

the rate constants of the system in each binding step can make life more complicated

and then the maxima in the ∆Ssys curve may or may not be associated with the

binding probability curve crossings.

We can justify the curve crossings, whether they all cross or cross pairwise at a

particular substrate concentration, by inspecting the expressions of the steady state

probability distributions. We see from the steady state distribution for the spatial

cooperativity, Eq.(5.5), that if one of the probabilities, say P(0) is approximately

equal to any other probability, say P(3), then X ∼ 1 (but obviously not exactly

equal to 1) and this automatically leads to the near equality of all the probabilities

at this value of X. This is true for all the probabilities and hence in this case

the probabilities can only cross simultaneously at X ∼ 1. As the probabilities are

equal at this point which corresponds to [S] ∼ 600 µM, this obviously gives the

maximum system entropy production in this case. Now we take the steady state

distribution of the non-cooperative case, Eq.(5.14). It can be easily seen that here

only P(0) = P(3) leads to the equality P(1) = P(2) at X = 1 giving the maximum of

∆Ssys again at [S] ∼ 600 µM. So in the context of the system entropy production the

spatial cooperative system shows some similarity with the non-cooperative system.
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Figure 5.7: Plot of the steady state distributions, Pss(n) against [S] (in µM unit)
for (a) spatial cooperative binding, (b) positive (temporal) cooperative binding, (c)
negative (temporal) cooperative binding and (d) non-cooperative binding. In the
plots, the ‘ss’ superscript is dropped for simplicity. The arrows indicate the curve
crossing points.

With the same set of site-independent rate constants, the spatial cooperative system

is also associated with larger system entropy production compared to that of the

non-cooperative case. This is because all the binding probabilities become equal for

the spatial cooperativity whereas they become equal pairwise for non-cooperative

binding.

The cases of positive and negative cooperativity belonging to the class of tempo-

ral cooperativity are a bit complicated. We have considered a 10-fold increase of the

substrate binding rate constant for each successive binding in the case of positive

cooperativity whereas a 10-fold decrease in the corresponding rate constant for each

successive binding for negative cooperativity. This symmetry ensures that in both

the cases only P(0) = P(3) leads to the equality P(1) = P(2) at X(1) = 1. This can

be easily proved from Eq.(5.8). But if the rise or fall of the value of the substrate

binding rate constant in each successive step of binding is not by the same factor,

then the pairwise equality of the binding probabilities is not possible at a given

substrate concentration.

We have plotted the quantity, C in Fig.5.8 for positive cooperative system (in-

dependent binding) and also for the spatial cooperative binding for different values

of nT as a function of substrate concentration. For the positive cooperativity case,

the substrate binding rate constants, k
(n)
1 increase by a factor of 2 in each step. The

value of C grows with substrate concentration, starting just above 1.0 and finally
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Figure 5.8: Plot of the cooperativity index, C against substrate concentration, [S]
(in µM unit) for different values of the number of subunits of the oligomeric enzyme,
nT in the case of (a) positive (temporal) cooperativity and 5(b) spatial cooperativity.

saturates. One can see from Eq.(5.32), that the limiting value of C (obtained at

high substrate concentration) in case of spatial cooperativity is nT whereas for tem-

poral cooperativity it is given by f(nT−1) where f(nT−1) =
k
(nT−1)
1

k
(0)
1

. Here we specifically

mention the case of nT = 5 for the positive cooperativity where the limiting value of

C is f(4) =
k
(4)
1

k
(0)
1

= 24 = 16. It is evident from Fig.5.8(a) that this is indeed the case.

5.4.4 Characterization of cooperativity: a case study with
stepwise Aspartate receptor binding

Although apparently there is no straightforward connection between the Hill coeffi-

cient, nH and C, first of all it is clear that the well-known criteria of cooperativity

in terms of nH is exactly the criteria we have given in terms of the cooperativity

index, C in Eq.(5.35). Both the measures are equal to 1 in the absence of coop-

erativity whereas for cooperative binding, the criteria are the same although the

actual values of nH and C will be generally different. Here we will try to illustrate

this point using some experimental data from the work of Kolodziej et al. [154]

regarding the production of positive, negative as well as non-cooperativity by muta-

tions at a serine 68 residue located at the subunit interface in the dimeric aspartate

receptor of Salmonella typhimurium. Due to unavailability of experimental data

of the stepwise Michaelis-Menten constants, K
(j)
M , we use the stepwise binding con-

stants reported in their study in the place of (K
(j)
M )−1 of the independent binding

model with nT = 2 and j = 0, 1. Now the parameter X(j) in our study is related to
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K
(j)
M in the general non-equilibrium condition and reduces to stepwise equilibrium

(binding) constants under the conditions already discussed at the end of Sec.IIC.

For experimental testability of C at NESS, one needs the stepwise Michaelis-Menten

constants, K
(j)
M . We choose the independent binding model as the experimental re-

sult reports both positive and negative cooperativity. We calculate the fractional

saturation θ as a function of substrate concentration, [S] using Eq.(5.9) and find out

the Hill coefficient, nH at the half-saturation point (θ = 0.5). Then we determine

the cooperativity index, C at the substrate concentration where θ = 0.5. The re-

sults are given in Table. 1. The Hill coefficients derived by us for different cases

tally very well with the experimental data[154]. The cooperativity index, C detects

the presence and absence of cooperativity successfully. Also the extent or degree of

positive or negative cooperative behavior is equally well characterized by the index,

C. This can be seen by comparing the values of nH and C for the cases of serine

and cysteine showing negative cooperativity as well as for threonine and isoleucine

showing positive cooperativity.

Table 5.1: The stepwise Aspartate binding constants, K
′

1 and K
′

2 (in µM−1) for
different amino acid residues at position 68 of Aspartate receptor taken from the
experimental study of Kolodziej et al[154]. Here we have taken the values of the

inverse of the stepwise Michaelis-Menten constants, K
(j)
M in our model to be equal to

the binding constants. The values of the Hill coefficient, nH in the parentheses are
from the experimental work, given for comparison with the values determined here.
The cooperativity index, C characterizes the cooperative behavior successfully as
can be seen by comparing it with nH.

Amino acid 1

K
(0)
M

(= K
′

1)
1

K
(1)
M

(= K
′

2) nH C

serine 0.7 0.2 0.7(0.7) 0.491
cysteine 0.5 0.2 0.776(0.8) 0.598
threonine 0.4 0.9 1.197(1.2) 1.519
isoleucine 0.4 2.8 1.446(1.4) 2.558
aspartate 0.1 0.1 1.0(1.0) 1.0

The cooperativity index, C is related to the probability of fully bound state of

the single enzyme. So another possibility of experimentally determining C, apart

from the measurement of the stepwise Michaelis-Menten constants, will be to detect

this fully bound state by electrical or optical means in a single molecule experiment

and then to fit the resulting probability with some model distribution.

5.5 Conclusion

We have classified the cooperative substrate binding phenomena of a single oligomeric

enzyme on the basis of the binding mechanism and the nature of the substrate-bound
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states of the system in a chemiostatic condition. Both the binding mechanisms are

modelled in terms of master equation. The sequential binding of the substrate

molecules leads to spatial cooperativity whereas the independent binding scheme

leads to temporal cooperativity. We have determined the various entropy produc-

tions due to the enzyme kinetics over a time interval where at the final point of

time the system is in a non-equilibrium steady state (NESS) that can be arbitrarily

far away from equilibrium. We have used kinetic Monte Carlo simulation algorithm

applied on a single trajectory basis to calculate the entropy production. In this

context, the interesting finding is that the total as well as the medium entropy

production show the same diagnostic signatures for detecting the cooperativity as

is well known in terms of the average binding number or the net velocity of the

reaction. More specifically, ∆Stot as well as ∆Sm for positive cooperative kinetics

show sigmoidal variation as a function of substrate concentration whether the class

being spatial or temporal. They also show the non-linearity in the inverse plot of

Lineweaver-Burk type demonstrating the case of negative cooperativity. The signs

of cooperative behavior is also reflected in a similar fashion on the variation of the

total entropy production rate (epr) with substrate concentration determined at the

NESS for different binding schemes. That the features of cooperativity are reflected

similarly on the variations of both the total epr at the NESS and the total (and

medium) entropy production over a time interval up to the NESS is a highly inter-

esting fact and gives deep insight on the role of the binding mechanism in governing

the total entropy production in a general non-equilibrium setup.

We have thoroughly analyzed the system entropy production for all the cases

in terms of the steady state binding probability distributions. For a spatial and

a non-cooperative system, the maximum value of the system entropy production

due to the non-equilibrium processes in the reaction appears at the same substrate

concentration with the value of the entropy production being greater for the spatial

cooperativity. We have explained this in terms of the different binding probability

curve-crossings that helps to understand how the binding characteristics affect the

entropy production of the system, i.e, the single oligomeric enzyme. Similarly, the

distinct features of the evolution of system entropy production for the positive and

negative cooperative binding give valuable insights on its connection to the binding

mechanism.

We have introduced an index of cooperativity, C defined as the ratio of the sur-

prisal or equivalently, the stochastic system entropy associated with the fully bound

state of the cooperative and non-cooperative cases. The criteria of cooperativity in

terms of C is identical to that of the Hill coefficient. We have analyzed its connection

to the Hill coefficient using some relevant experimental data. This index is truly an

entropic estimate of cooperativity and gives a microscopic insight on the cooperative

binding of substrate on a single oligomeric enzyme instead of realizing cooperativity
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in terms of macroscopic reaction rate.



114



Chapter 6

Kinetic and thermodynamic
description of voltage-gated single
Potassium ion channel

In this chapter we have studied the non-equilibrium thermodynamic response

of a voltage-gated single Shaker Potassium ion channel using a master equation.

After giving a brief introduction about the goal of our study in Section 6.1, we

have described the ion channel kinetic scheme in section 6.2, both for constant and

oscillating voltage. For constant voltage case, we have discussed about the Hodgkin-

Huxley equation for the probability of the ion-conducting state and in the case of

time-dependent voltage, an analytical expression is given in terms of the probability

of the ion-conducting state. Expressions of the total, medium and system entropy

production rates are also given in this section for the non-equilibrium characteriza-

tion. In section 6.3, we have extended the kinetic result of single ion channel to a

system of finite number of ion channels. We have determined the various entropy

production rates as well as the ionic current for constant and oscillating voltage

and studied the hysteretic behavior to characterize the non-equilibrium response

properties of the system in section 6.4. Finally the chapter is concluded in section

6.5.

6.1 Introduction

Study of ion channel plays an important role in understanding the propagation of

nerve impulse and a wide variety of phenomena associated with excitable tissue

of neural as well as non-neural nature[5, 45, 46, 47]. Ion channels maintain a con-

trolled exchange of ions between the cells and the extra-cellular medium through ion-

permeable pores with the rearrangement of the tertiary structure of channel proteins.

A great deal of understanding about the function of the ion channel owes its origin in

the experiments using voltage clamp method[5, 47, 48, 53, 54, 55, 156, 157, 158]. In
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a traditional voltage clamp technique, ion flow across a cell membrane is measured

as electric current, while the membrane voltage is held under experimental control

with a feedback circuit[5, 47, 48, 54, 55, 156]. Current due to single ion channel can

also be measured using patch clamp experiment based on the similar principle[5].

Recently non-equilibrium response spectroscopy [56, 57] has added a new dimen-

sion in the field of ion channel experiments using oscillating voltage protocol. This

technique has been used for the selection of the appropriate Markov model from

various possible schemes of ion channel kinetics[4, 56, 57, 69, 159]. From the ki-

netic studies, it has been found qualitatively that the oscillating voltage drives the

ion channel out of equilibrium and resists the system to relax back to equilibrium

[4, 56, 57, 69]. The oscillating voltage protocol[159] thus offers an opportunity to ex-

plore non-equilibrium response properties of the ion channel such as hysteresis[160]

at non-equilibrium steady state(NESS).

Hysteresis has a long history[160] in its wide manifestation in various magnetic[161,

162] and other condensed matter systems[163, 164] as well as in biological processes[50,

159, 165]. In voltage-gated ion channels, hysteresis can occur when the time period of

the oscillating external voltage is comparable to the characteristic relaxation time

of the conformational transitions between conducting and non-conducting states

[165, 166, 167, 168]. The channel hysteresis has several biological relevance, for ex-

ample, it plays an important functional role in regulating physiological phenomena

and is also a governing factor in maintaining the action of a neuron pacemaker[167].

A detailed theoretical description of hysteresis in ion channel for oscillating voltage

was given by Pustovoit et al.[168] by considering a simple two-state model. Recently,

Andersson described the hysteresis of ionic conductance[70] for oscillating voltage

by considering the analysis of Pustovoit et al.[168] and then they have extended

the study of the channel gating schemes for multiple states with independent as

well as cooperative gating. Their studies[70, 168] reveal that the probability-voltage

as well as the current-voltage hysteresis is dynamic in nature. The hysteresis loop

area vanishes at the low and high frequency limits of the external oscillating voltage

due to the wide time scale separation. Now, particularly for time-dependent exter-

nal voltage, the system can go arbitrarily far away from equilibrium. Hence, along

with the kinetic properties, the non-equilibrium thermodynamic features of the ion

channel must also be explored. In this perspective, we have raised the following

questions. (i) Are these low and high frequency limiting situations equivalent from

the thermodynamic viewpoint or does the vanishing of an out-of-equilibrium phe-

nomenon like hysteresis ensure that the system is at thermodynamic equilibrium?

(ii) At non-equilibrium steady state(NESS), how the supplied energy is utilized for

the production of ionic current? To address the above issues coherently, we have

given a detailed non-equilibrium thermodynamic analysis of a voltage-gated Shaker

Potassium ion channel. The ion channel kinetics is described by a master equation
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constructed on the basis of a most suited Markov process proposed in an experi-

mental work[4]. Starting from the model consisting of five states, we have discussed

about how the stochastic conformational states are connected with the essential fea-

tures of traditional Hodgkin-Huxley equation at constant voltage. Then we have

explored the non-equilibrium thermodynamic features due to oscillating voltage.

6.2 Markov model of a voltage-gated Potassium

ion channel

In this section, first we have provided the master equation describing the voltage-

gated Potassium ion channel kinetics. For constant voltage case, the connection of

the master equation with the Hodgkin-Huxley equation and results of the probability

of ion-conduction are discussed. The time-dependent solution of the ion-conducting

state probability is then given for oscillating voltage for a five-state model with one

conducting and four non-conducting states. Then the corresponding expressions of

the system, medium and total entropy production rates are provided.

6.2.1 Kinetic scheme of a Potassium ion channel and the
master equation

Various experimental results reveal that a Potassium ion channel is comprised of

four independent homologous subunits [169, 170, 171] where each subunit remains

in several conformational states. For simplicity, here we have considered only two

conformational states of each subunit, i.e., inactive and active[172, 173, 174]. The

dynamics of the Potassium channel can be described in terms of the number of

subunits in active state at a particular instant of time. An optimum kinetic scheme

of the activation of voltage-gated Potassium ion channel[4, 48] can be written as

C0

4 k
(0)
1 (V (t))

−−−−−−−⇀↽−−−−−−−
k

(1)
−1 (V (t))

C1

3 k
(1)
1 (V (t))

−−−−−−−⇀↽−−−−−−−
2 k

(2)
−1 (V (t))

C2

2 k
(2)
1 (V (t))

−−−−−−−⇀↽−−−−−−−
3 k

(3)
−1 (V (t))

C3

k
(3)
1 (V (t))

−−−−−−−⇀↽−−−−−−−
4 k

(4)
−1 (V (t))

C4 (6.1)

where Cn represents the n-th conformational state of the ion channel with n number

of subunits in active state, where n = 0, 1, . . . , 4. The number of subunits in active

state can increase or decrease by one unit due to the occurrence of a forward or a

backward reaction with voltage-dependent rate constants k
(n)
1 (V(t)) and k

(n)
−1(V(t)),

respectively. Here V(t) is the time-dependent external voltage. The rate constants

are explicitly defined as[4]

k
(n)
1 (V(t)) = k

(n)
1 (0)exp

(

q+V(t)

kBT′

)

and

k
(n)
−1(V(t)) = k

(n)
−1(0)exp

(

q−V(t)

kBT′

)

, (6.2)
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where q± are the gating charges associated with each forward and backward transi-

tions, respectively. k
(n)
1 (0) and k

(n)
−1(0) are the forward and backward rate constants

of the n-th conformational state at zero voltage, T′ is the absolute temperature and

kB is the Boltzmann constant. During the time evolution, the number of subunits

in active state becomes a fluctuating quantity[12, 13, 16] for a single ion channel.

Therefore, the system performs a one-dimensional random walk along these dynam-

ical states[12, 16]. The state, C4 has been considered here as the ion-conducting

state where all the subunits are simultaneously in active state. To describe the

time evolution of the single ion channel, we have constructed a stochastic master

equation[13, 74, 173, 175] in terms of the number of subunits in active state at a

particular instant of time, t. The master equation can be written as

dPn(t)

dt
=

∑

µ=±1

[w(n−νµ)
µ (n − νµ|n)(t)P(n−νµ)(t) − w

(n)
−µ(n|n − νµ)(t)Pn(t)], (6.3)

where νµ is the stoichiometric coefficient of the µ-th reaction and ν1 = 1 for forward

process and ν−1 = −1 for backward process. Pn(t) is the probability of having n

number of subunits in active state at time t where n runs from 0 to nT. Here nT

is the total number of subunits with nT = 4. The forward process, say µ = 1,

transforms the state (n − 1) to n and the reverse process, µ = −1, transforms the

state n to (n − 1). The corresponding transition probabilities are defined as

w
(n−1)
1 (n − 1|n)(t) = k

(n−1)
1 (V(t))(nT − (n − 1)),

and

w
(n)
−1(n|n − 1)(t) = k

(n)
−1(V(t))(n). (6.4)

Now putting the transition probabilities in Eq.(6.3) we obtain the simplified form

of master equation as

dPn(t)

dt
= k

(n−1)
1 (V(t))(nT − n + 1)P(n−1)(t) + k

(n)
−1(V(t))(n + 1)P(n+1)(t)

−k
(n−1)
1 (V(t))(nT − n)Pn(t) − k

(n)
−1(V(t))nPn(t). (6.5)

6.2.2 Constant voltage case: Hodgkin-Huxley results from
master equation

Traditionally the ion channel kinetics is studied using the voltage clamp technique

where the voltage is varied, say from one holding potential to another, by matching

the voltage value to a variable control voltage[48, 54, 55, 70]. Thereby the ion channel
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conductance relaxes towards its new equilibrium[70]. In the constant voltage case,

the steady state solution of Eq.(6.5) can be written as

Pc
n =

(

nT

n

)
∏n−1

j=0 K(j)(V)
∑nT

n=0

(

nT

n

)
∏n−1

j=0 K(j)(V)
, (6.6)

where K(j)(V) =
k
(j)
1 (V)

k
(j+1)
−1 (V)

. Here we take K(j) = f jK(0) with j = 0, 1, ..., (nT − 1).

For f > 1, the successive equilibrium constants continue to increase giving rise

to positive cooperativity whereas for f < 1, they go on decreasing resulting in

negative cooperativity. For f = 1 i.e., K(j)(V) = K(0)(V) = K(V), the system is

noncooperative where the probability distribution reduces to a binomial as

Pnc
n =

(

nT

n

)

(K(V))n

(1 + K(V))nT
, (6.7)

where K(V) = k1(V)
k−1(V)

. By inserting the value of K(V), the above equation can be

written as a binomial distribution given by

Pnc
n =

(

nT

n

)(

k1(V)

k1(V) + k−1(V)

)n (

k−1(V)

k1(V) + k−1(V)

)(nT−n)

. (6.8)

For noncooperative case, the time-dependent solution of Eq.(6.5) gives[12, 16,

173, 176, 177, 178, 153] as

Pn(t) =

(

nT

n

)

X(t)n(Y(t))nT−n. (6.9)

Here

X(t) =
k1(V)(1 − exp(−(k1(V) + k−1(V))t))

k1(V) + k−1(V)
, (6.10)

Y(t) = (1 − X(t)) =
k−1(V) + k1(V)exp(−(k1(V) + k−1(V))t)

k1(V) + k−1(V)
, (6.11)

assuming that initially all the subunits are in inactive state, C0 i.e, the n = 0 state.

This solution is well-known for the independent conformational transitions of the

ion channel subunits[173, 179]. So the overall dynamics of the ion channel having

nT = 4 number of independent subunits can be expressed in terms of the dynamics

of a single subunit described by the variables, X(t) and Y(t). This idea has been

put forward by a number of authors in the context of ion-channels[173], enzyme

kinetics[177, 178] and receptors[153, 179]. The combinatorial factor appearing in

front of Eq.(6.9) gives the number of ways to choose n active states from nT.

The average number of subunits in active state is expressed as 〈n(t)〉 = nTX(t)

and the average number of subunits in inactive state is 〈nT − n(t)〉 = nTY(t). The

parameter X satisfies the differential equation[47, 173]

dX(t)

dt
= k1(V)(1 − X(t)) − k−1(V)(X(t)). (6.12)
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This equation is identical to the equation for the ‘open probability’ originally intro-

duced by Hodgkin and Huxley to model the Potassium ion channel conductance[47,

173]. However, they did not consider the details of the conformational dynamics of

the channel subunits as described here in the master equation.

Furthermore, the probability of ion conducting state, PnT
(t) (nT = 4) at steady

state can be obtained from Eq.(6.9) as

P(ss)
nT

= [X(ss)]nT , (6.13)

where X(ss) is the steady state value of X(t) given from Eq.(6.10) as X(ss) = k1(V)
k1(V)+k−1(V)

.

Using the value of X(ss) in Eq.(6.13), we get

P(ss)
nT

=

[

k1(V)

k1(V) + k−1(V)

]nT

. (6.14)

Now substituting the expressions of k1(V) and k−1(V) from Eq.(6.2) into Eq.(6.14),

we finally obtain the steady state probability of the ion-conducting state[48],

P(ss)
nT

=

[

1

1 + Keq(0)exp(−qV
kBT′

)

]nT

, (6.15)

with q = (q+ − q−) and Keq(0) is the equilibrium constant defined as Keq(0) =
(

k−1(0)
k1(0)

)

. The above probability is of the form of Boltzmann distribution of power nT,

usually used for calculating the probability of ion-conducting state in voltage clamp

experiments where nT is the number of independent and identical transitions[48].

Therefore, at constant voltage the probability of ion-conducting state becomes a

powered Boltzmann distribution.

6.2.3 Solution of Ion channel kinetics for oscillating voltage

Here we have described the kinetics of a single Potassium ion channel for os-

cillating voltage based on the reaction scheme in Eq.(6.1). To get some analytical

understanding, we have expressed the overall reaction in terms of the ion-conducting

state which is designated as C4 in the reaction scheme. The probability rate equation

for this state can be easily obtained from Eq.(6.3) as

dP4(t)

dt
= k1(V(t))P3(t) − nTk−1(V(t))P4(t). (6.16)

By using the normalization condition
∑4

n=0 Pn(t) = 1, we can rewrite Eq.(6.16) as

dP4(t)

dt
= χ(t) − K(t)P4(t), (6.17)

where χ(t) = k1(V(t)) [1 − {P0(t) + P1(t) + P2(t)}] and K(t) = [k1(V(t)) + nTk−1(V(t))].

The solution of the above equation can be written as
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P4(t) = P4(t0) exp[−

∫ t

t0

K(t
′

)dt
′

] +

∫ t

t0

χ(t
′

) exp[−

∫ t

t
′

K(t
′′

)dt
′′

]dt
′

. (6.18)

Using Eq.(6.18) one can write P(4, t) for mT < t < (m + 1)T as[168]

P4(mT + t) = P4(mT) exp[−

∫ t

mT

K(t
′

)dt
′

] +

∫ t

mT

χ(t
′

) exp[−

∫ t

t
′

K(t
′′

)dt
′′

]dt
′

,

(6.19)

where T is the time period of the oscillating voltage and m (= 0, 1, 2, ....) is the

index of oscillation period. Now, using Eq.(6.18), one can write a recursion formula

connecting the probabilities P4(mT) and P4((m + 1)T) as

P4((m + 1)T) = φP4(mT) + ∆0, (6.20)

where φ and ∆0 are given by

φ = exp

[

−

∫ T

0

K(t)dt

]

(6.21)

and

∆0 =

∫ T

0

χ(t
′

) exp

[

−

∫ T

t′
K(t

′′

)dt
′′

]

dt
′

. (6.22)

Above recursion relation gives the value of P4(mT) as

P4(mT) = φmP4(0) +
1 − φm

1 − φ
∆0, (6.23)

where P4(0) is the initial probability of the ion-conducting state. When m → ∞,

the probability P4(mT) approaches its asymptotic value,

limm→∞P4(mT) =
∆0

1 − φ
. (6.24)

By substituting the above equation into Eq.(6.19) and taking the asymptotic long

time limit of the probability, P4(mT + t) which is denoted as P
(ss)
4 (t), we obtain

P
(ss)
4 (t) = limm→∞P4(mT + t) =

∆(t)

1 − φ
. (6.25)

Here the function ∆(t) is given by

∆(t) =

∫ t+T

t

χ(t
′

) exp

[

−

∫ t+T

t′
K(t

′′

)dt
′′

]

dt
′

. (6.26)

At very low frequency limit when T → ∞, φ defined in Eq.(6.21) vanishes.

Therefore, P
(ss)
4 (t) in Eq.(6.25) can be written as

P
(ss)
4 (t) =

∫ T

0

χ(t − t
′

)exp[−

∫ t
′

0

K(t − t
′′

)dt
′′

]dt
′

. (6.27)
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As χ(t
′

) and K(t
′

) are slowly varying functions in the low frequency limit, we can

take the following approximation

χ(t − t
′

) ≈ χ(t) − t
′

χ̇(t
′

), K(t − t
′′

) ≈ K(t) − t
′′

K̇(t
′′

)

and

exp[−

∫ t
′

0

K(t − t
′′

)dt
′′

] ≈

(

1 +
1

2
K̇(t)t

′2
)

exp[−K(t)t
′

]. (6.28)

Neglecting the term proportional to the product χ(t)K(t), we obtain

P
(ss)
4 (t) ≈ Q(t) −

Q̇(t)

K(t)
, (6.29)

where Q(t) = χ(t)
K(t)

. Then for slowly varying voltage, P
(ss)
4 (t) finally becomes

P
(ss)
4 (t) =

χ(t)

K(t)
. (6.30)

Similarly, in the high frequency limit when T → 0, φ defined in Eq.(6.21) can be

written as

φ = 1 − T〈K〉. (6.31)

Here 〈f〉 = 1
T

∫ T

0
f(t)dt where f can be χ(t) or K(t). Hence P

(ss)
4 (t) in Eq.(6.25) takes

the form

P
(ss)
4 (t) =

1

T〈K〉

∫ t+T

t

χ(t
′

) exp

[

−

∫ t+T

t
′

K(t
′′

)dt
′′

]

dt
′

. (6.32)

In the high frequency limit we can take the following approximation

exp

[

−

∫ t+T

t
′

K(t
′′

)dt
′′

]

≈ 1 −

∫ t+T

t
′

K(t
′′

)dt
′′

. (6.33)

Using this approximation, Eq.(6.32) can be written as

P
(ss)
4 (t) =

∫ t+T

t
χ(t

′

)dt
′

−
∫ t+T

t
χ(t

′

)dt
′
∫ t+T

t′
K(t

′′

)dt
′′

∫ t+T

t
K(t′)dt′

=
〈χ(t)〉

〈K(t)〉
− δ(t). (6.34)

Here we define δ(t) = ξ
R t+T
t K(t

′
)dt

′
where ξ =

∫ t+T

t
χ(t

′

)(
∫ t+T

t′
K(t

′′

)dt
′′

)dt
′

. Here the

limit t
′

varies in the range, t ≤ t
′

≤ t+T and t
′′

varies in the range, t
′

≤ t
′′

≤ t+T. In

the double integration, ξ in the limit of T → 0, one can approximate (
∫ t+T

t′
K(t

′′

)dt
′′

)

as (T+t− t
′

)K(t′) where 0 ≤ (T+t− t
′

) ≤ T. This makes ξ ≈ T
∫ t+T

t
χ(t

′

)K(t
′

)dt
′

and consequently δ(t) → 0 in the high frequency limit. This ensures that in the

high frequency limit, P
(ss)
4 (t) in Eq.(6.34) becomes

P
(ss)
4 (t) =

〈χ(t)〉

〈K(t)〉
. (6.35)
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The fact that the value of δ(t) tends to 0 with increase in frequency is also sup-

ported by the direct numerical evaluation of P
(ss)
4 (t) and 〈χ(t)〉

〈K(t)〉
. One must also note

that although the equations (6.30) and (6.35) give the steady state ion-conducting

probability, P
(ss)
4 (t) in compact form, it is not possible to evaluate analytically as

χ(t) depends on P0(t), P1(t) and P2(t). To determine these probabilities, we resort

to numerical solution of the general master equation, Eq.(6.3) with time-dependent

transition probabilities for oscillating voltage. The numerically determined time-

dependent probabilities, Pn(t) are used to obtain the ionic current and entropy

production rates for further studies. The details are given in section 6.4.

6.2.4 Entropy production rates: non-equilibrium character-
ization of ion channel

To explore the non-equilibrium thermodynamic features of the Potassium ion chan-

nel, here we discuss on the entropy production rates due to the channel kinetics.

We start from the definition of the entropy of the system in terms of the Shannon

entropy as[16, 100, 101]

Ssys(t) = −kB

∑

n

Pn(t)lnPn(t). (6.36)

Using the master equation, Eq.(6.3) we get the system entropy production rate

(epr) as

Ṡsys(t) =
1

2

∑

n,µ=±1

[wµ(n − νµ|n)(t)P(n−νµ)(t) − w−µ(n|n − νµ)(t)Pn(t)]

×ln

(

P(n−νµ)(t)

Pn(t)

)

, (6.37)

where we set the Boltzmann constant, kB = 1. Here the voltage-dependent transi-

tion probabilities are functions of time due to the explicit time-dependence of the

voltage as given in Eq.(6.4). We have assumed ideal reservoir (surroundings) with

no inherent entropy production except through the boundaries of the system. The

system epr can be split as[100, 101, 102, 103, 104, 180]

Ṡsys(t) = Ṡtot(t) − Ṡm(t). (6.38)

Here the first term in the r.h.s. of Eq.(6.38) gives the total epr and the second term

denotes the medium epr due to the entropy flux into the surroundings. They are

defined as

Ṡtot(t) =
1

2

∑

n,µ=±1

[wµ(n − νµ|n)(t)P(n−νµ)(t) − w−µ(n|n − νµ)(t)Pn(t)]

× ln

(

wµ(n − νµ|n)P(n−νµ)(t)

w−µ(n|n − νµ)Pn(t)

)

(6.39)
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and

Ṡm(t) =
1

2

∑

n,µ=±1

[wµ(n − νµ|n)(t)P(n−νµ)(t) − w−µ(n|n − νµ)(t)Pn(t)]

× ln

(

wµ(n − νµ|n)

w−µ(n|n − νµ)

)

. (6.40)

Using the values of forward and backward transition probabilities from Eq.(6.4)

into Eq.(6.39) and considering the boundary conditions P(n−1) = 0 for n = 0 and

P(n+1) = 0 for n = nT, we finally obtain the expression of Ṡtot(t) for ion channel as

Ṡtot(t) =

nT−1
∑

n=0

[

k1(V(t))(nT − n)Pn(t) − k−1(V(t))(n + 1)P(n+1)(t)
]

×ln

(

k1(V(t))(nT − n)Pn(t)

k−1(V(t))(n + 1)P(n+1)(t)

)

. (6.41)

From the above Eq.(6.41) we can calculate the total entropy production rate at

constant voltage as well as at high and low frequency limits of oscillating voltage.

Calculation of total entropy production rate at constant voltage

To calculate the total entropy production rate at equilibrium, we have substituted

the time-dependent probability value, Pn(t) from Eq.(6.9) into Eq(6.41) and obtain

Ṡtot(t) = [k1(V)〈nT − n(t)〉 − k−1(V)〈n(t)〉] ln

(

k1(V)Y(t)

k−1(V)X(t)

)

. (6.42)

At steady state from Eq.(6.10) and (6.11) we have X(ss) =
(

k1(V)
k1(V)+k−1(V)

)

and Y(ss) =
(

k−1(V)
k1(V)+k−1(V)

)

. Then it follows easily from Eq.(6.42) that Ṡtot(t) becomes zero at

equilibrium for a constant external voltage.

Estimation of total entropy production rate at low and high frequency
limit

Here we have estimated the entropy production rate in the low and high frequency

limit from Eq.(6.41). It is quite obvious that in the low frequency limit, the steady

state value of P4(t), P
(ss)
4 (t) tends to its equilibrium value where the condition of

detailed balance is satisfied as in the case of constant voltage. Therefore, at steady

state the total entropy production rate, Ṡ
(ss)
tot (t) becomes zero in the low frequency

limit.

To estimate the total entropy production rate, Ṡ
(ss)
tot (t) at high frequency limit,

we have considered that at this limit the values of P0(t), P1(t) and P2(t) becomes

zero. Our consideration is justified from the numerical analysis which is thoroughly

discussed in the section 6.4. From this consideration, χ(t) in Eq.(6.17) can be written
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as χ(t) ≈ k1(V(t)) and Ṡ
(ss)
tot (t) in Eq.(6.41) can be expressed in terms of the steady

state probability of ion-conducting state, P
(ss)
4 (t) as

Ṡ
(ss)
tot (t) =

[

k1(V(t))(1 − P
(ss)
4 (t)) − k−1(V(t))nTP

(ss)
4 (t)

]

ln
k1(V(t))(1 − P

(ss)
4 (t))

k−1(V(t))nTP
(ss)
4 (t)

.

(6.43)

Therefore, in the high frequency limit, the steady state value of Ṡ
(ss)
tot can be easily

calculated by substituting the value of P
(ss)
4 (t) from Eq.(6.35) into Eq.(6.43) whereby

we get

Ṡ
(ss)
tot (t) = nT

[

k1(V(t))〈k−1(V(t))〉 − k−1(V(t))〈k1(V(t))〉

〈K(t)〉

]

ln
k1(V(t))〈k−1(V(t))〉

k−1(V(t))〈k1(V(t))〉
.

(6.44)

Here K(t) = k1(V(t))+nTk−1(V(t)). When ω → ∞, 〈k1(V(t))〉 and 〈k−1(V(t))〉 can

be written as

〈k1(V(t))〉 = f1 k1(0)

and

〈k−1(V(t))〉 = f−1 k−1(0), (6.45)

where f1 = 〈exp[x1V(t)]〉 with x1 = q+

kBT′
and f−1 = 〈exp[x−1V(t)]〉 with x−1 = q−

kBT′
.

As the value of q+ ≈ −q−, we have taken q+ = q− = q. So we can write x1 = x and

x−1 = −x. Therefore, f±1 can be written as

f±1 = 1 ± 〈xV(t)〉 +
(〈xV(t)〉)2

2
±

(〈xV(t)〉)3

3!
+ ...,

where 〈xV(t)〉n =
[

1
T

∫ T

0
x(V0sinωt)dt

]n

with n = {0, 1, 2....}. When n is odd,

〈xV(t)〉n = 0 and for even values of n, 〈xV(t)〉n becomes independent of frequency,

ω. Hence we can write 〈k1(t)〉 = f k1(0) and 〈k−1(t)〉 = f k−1(0), where f± = f.

Using these relations, Eq.(6.44) can be written as

Ṡ
(ss)
tot (t) = nT

[

k1(0)k−1(0)2sinh(V
′

(t))

k1(0) + nTk−1(0)

]

2V
′

(t), (6.46)

where V
′

(t) = xV(t) with x = q
kBT′

. The value of Ṡ
(ss)
tot (t) calculated from Eq.(6.46)

is an approximate one, however, from this analytic expression we can obtain the

limiting value of 〈Ṡ
(ss)
tot (t)〉 in the high frequency limit (ω → ∞).

Now from Eq.(6.46) it can be easily shown that in the high frequency limit,

Ṡ
(ss)
tot (t) oscillates with a time-period which is half of that of the external voltage,

V(t). To prove this first we note that V(t+ T
2
) = Vasinω(t+ T

2
) = −Vasinωt = −V(t)

and thus sinh(V
′

(t + T
2
)) = −sinh(V

′

(t)). Then it follows from Eq.(6.46) that

Ṡ
(ss)
tot

(

t +
T

2

)

= nT

[

k1(0)k−1(0)2sinh(V
′

(t + T
2
))

k1(0) + nTk−1(0)

]

2V
′

(

t +
T

2

)

= Ṡ
(ss)
tot (t). (6.47)

Therefore, in the high frequency limit Ṡ
(ss)
tot (t) versus time curve becomes symmetric

and it completes a cycle at T/2.
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6.3 Markov model for many Potassium ion chan-

nels

Here we have discussed about how the single ion channel results can be extended for

LT number of Shaker channels. In Eq.(6.1), we have already discussed the kinetic

scheme of a single ion channel, where an ion channel remains in any one of the five

conformational states (C0 to C4) at a particular instant of time. For LT number of

channels, the kinetic scheme can be written as[53]

m0

W(m0|m1)(t)
−−−−−−−−⇀↽−−−−−−−−
W(m1|m0)(t)

m1

W(m1|m2)(t)
−−−−−−−−⇀↽−−−−−−−−
W(m2|m1)(t)

m2

W(m2|m3)(t)
−−−−−−−−⇀↽−−−−−−−−
W(m3|m2)(t)

m3

W(m3|m4)(t)
−−−−−−−−⇀↽−−−−−−−−
W(m4|m3)(t)

m4, (6.48)

where the transition probabilities are given as W(mn|m(n−1))(t) = mnw−1(n|n−1)(t)

and W(m(n−1)|mn)(t) = m(n−1)w1(n−1|n)(t). Here w−1(n|n−1)(t) and w1(n−1|n)(t)

are defined as in Eq.(5.21). Here mn specifies the number of channels in the Cn

conformational state (n varies from 0 to 4) at time t with
∑4

n=0 mn = LT. The

corresponding master equation can be written as[53]

∂Q(m, t)

∂t
=

4
∑

n=1

(mn+1)w−1(n|n−1)(t)Q(m(n−1)−1, mn+1, t)+(m(n−1)+1)w1(n−1|n)(t)

Q(m(n−1) + 1, mn − 1, t)−mnw−1(n|n− 1)(t)Q(m, t)−m(n−1)w1(n− 1|n)(t)Q(m, t).

(6.49)

Here Q(m, t) is the probability of having the population state vector m at time t

where m ≡ (m1, m2, m3, m4) with m0 = LT−
∑4

n=1 mn. For analytical simplicity, we

have considered the two-state Markov model instead of a five-state one by assuming

that all the ion channels are either in inactive or active state. Therefore, for the

two-state Markov model the kinetic scheme can be written as

Close
k1(V (t))

−−−−−−⇀↽−−−−−−
k
−1(V (t))

Open. (6.50)

These ‘Close’ and ‘Open’ states are similar to the conformational states, m0 and m4

in Eq.(6.48) where all the subunits in an ion channel remain in inactive and active

state, respectively. For this two-state case, the master equation can be constructed

in terms of the number of channels in open state at a particular instant of time as

dQ(m,t)

dt
= k1(V(t))(LT − m + 1)Q(m − 1, t) + k−1(V(t))(m + 1)Q(m + 1, t)

−k1(V(t))(LT − m)Q(m, t) − k−1(V(t))mQ(m, t). (6.51)

Here Q(m, t) is the probability of having m number of channels in open state at time

t where the total number of channels. The master equation described in Eq.(6.51)

looks similar to that in Eq.(6.5) for a single ion channel consisting of five confor-

mational states. At constant voltage, solution of Eq.(6.51) becomes a binomial
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distribution as described in Eq.(6.9) and the average number of channels in open

state is given by 〈m(t)〉 = LTX(t) where X(t) is defined similarly as in Eq.(6.10).

At steady state, the value of X(t) becomes X(ss) = k1(V)
k1(V)+k−1(V)

and the probability

distribution becomes Q(ss)(m) = LT!
m!(LT−m)!

(X(ss))m(Y(ss))LT−m. If LT is very large and

X(ss) is very small, LT!
(LT−m)!

becomes (LT)m and (1 − X(ss))(LT−m) ≈ exp(−X(ss)LT).

Then the probability distribution becomes Poissonian given as

Q(ss)(m) =
(LTX(ss))m

m!
exp(−X(ss)LT) (6.52)

where X(ss)LT is the average number of ion channels in open state. At a particular

time, t the ionic current can be calculated as

I(t) = g0 × g(V) × (V − Vr)〈m(t)〉 = g0 × g(V) × (V − Vr)LTQo(t), (6.53)

where Qo(t) is the open state probability of a single channel for the two-state case. g0

is the overall scaling factor representing the cell expression rate, g(V) is the nonlinear

conductance of an ion channel. Vr is the reversal potential at which no ionic current

can pass from the cell. From numerical analysis of Eq.(6.51), we can also obtain the

total epr, Ṡtot(t) and other non-equilibrium thermodynamic quantities.

6.4 Numerical study of voltage-gated Shaker Potas-

sium ion channel

In this section, using the numerical solution of the master equation given in Eq.(6.5)

for ion channel kinetics with time-dependent voltage, we determine the ionic current

described below as well as the various entropy production rates with dynamical

hysteresis phenomenon. Eq.(6.5) is numerically solved using the Heun’s algorithm

with constant time steps. We have taken the rate parameters from the experimental

work of Kargol et al.[4] obtained for the Shaker Potassium ion channel expressed in

mammalian cells, tsA 201. The rate constants at zero voltage are taken as k1(0) =

124.8s−1 and k−1(0) = 4.74s−1. The gating charges associated with each forward

and backward transition rates are q+ = 0.66e and q− = −0.64e, respectively and

the temperature is 120C. The externally applied oscillating voltage is considered

here as sinusoidal.

Here our main aim is to study the case of oscillating voltage. However, for

completeness of the study and as a theoretical support of a physiologically important

experimental system[4], at first we have briefly discussed about the case of constant

voltage where the master equation is analytically solvable.
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Figure 6.1: (a) Ionic current, I(t) in nanoAmpere(nA) is plotted against time (in
s) at constant depolarizing voltages, V=-15,-30 and -45 mV, respectively. In (b)
and (d), the steady state ionic current, I(ss) and probability of ion-conducting state,

P
(ss)
4 are plotted as a function of voltage at steady state. In (c), the total entropy

production rate(epr), Ṡtot(t) is plotted as a function of time at depolarizing voltages,
V=-30 and -45 mV, respectively. At constant voltage, system reaches equilibrium
characterized by vanishing total epr.

6.4.1 Kinetics and thermodynamics at constant voltage

Experimentally, kinetic description is usually carried out by measuring the ionic

current, I(t) which is calculated using the expression

I(t) = g0 × g(V) × (V − Vr)P4(t). (6.54)

Here g0 is the overall scaling factor representing the cell expression rate taken as g0 =

1.013 [4]. The functional form of the nonlinear conductance, g(V) (in microSiemens,

µS) is taken from the experimental paper of Kargol et al.[69] and given as g(V) =

1.340 × 10−9(V)3 − 7.30 × 10−8(V)2 − 3.35 × 10−5(V) + 4.470 × 10−3. Vr is the

reversal potential at which no ionic current can pass from the cell and taken here

as Vr = −90mV. From Fig.6.1(a) it is observed that the ionic current, I(t) first

increases with time and then saturates at a constant value. The magnitude of I(t)

increases with increase in constant (depolarizing) voltage, V. The conductance, g(V)

as a function of voltage, V is an inverted basin passing through a maximum. The

probability of ion-conducting state at steady state, P
(ss)
4 shows a sigmoidal rise with

increasing depolarizing voltage and goes to saturation at high (positive) voltage

values as is evident from the plot Fig.6.1(d). The current at steady state, I(ss) shows

similar behavior; however, at high (positive) depolarizing voltages it exhibits a small

decay as shown in Fig.6.1(b). This is due to the nonlinear voltage dependence of

the conductance, g(V). The nature of the steady state current-voltage curve follows
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Figure 6.2: The ionic current, I(t) and entropy production rate, Ṡtot(t) are plotted
as a function of time. The bold line in (b) denotes the mean value of Ṡtot(t) at
NESS.

similar qualitative trend as that of the experimental results of Kargol et al. for the

voltage clamp study. From Fig.6.1(c) it is observed that the steady state value of

Ṡtot(t) becomes zero which indicates that at constant voltage the system goes to

equilibrium.

To investigate the thermodynamic nature of the steady state at constant voltage,

The analytical result is supported by the numerical result shown in Fig.6.1(c).

6.4.2 Nonequilibrium behavior for oscillating Voltage: Dy-
namic entropy hysteresis

Now we come to the more interesting case of the time-dependent external voltage.

We take a sinusoidal voltage variation V(t) = V0+Vasinωt with mean V0, amplitude

Va and frequency ω. We numerically solve the master equation, Eq.(6.5) to get the

probability of the ion-conducting state, P4(t) and to calculate the ionic current, I(t)

and various entropy production rates. The ionic current, I(t) is calculated according

to Eq.(6.54) by considering the time-dependent voltage variation. For oscillating

external voltage, the ionic current reaches a time-periodic steady value, I(ss)(t). The

steady state is actually a non-equilibrium steady state(NESS) characterized by a

non-zero total epr, Ṡtot(t) shown in Fig. 6.2(b). Ṡtot(t) oscillates around a non-zero

mean value which is indicated in the figure with a bold line.

In Fig.6.3(a) and (b), I(ss)(t) vs voltage and P
(ss)
4 (t) vs voltage plots are shown

for three different frequency values (low, medium and high) of the external voltage

at steady state over a period. The hysteresis is evident in both the cases which

tends to vanish at very low and at very high frequencies with the hysteresis loop

area disappearing in these two limits. Here we want to point out the nature of

the P
(ss)
4 (t)-voltage plot specifically at the two limiting situations; at low frequency
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of the external voltage, P
(ss)
4 (t) oscillates significantly whereas in high frequency

the amplitude of oscillation is much less and P
(ss)
4 (t) deviates maximum from its

instantaneous steady state (equilibrium) value, i.e, the value P
(ss)
4 (t) will take if the

time-dependent voltage is frozen at the value taken at that instant.
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Figure 6.3: In figures (a)-(d), ionic current, I(ss)(t), probability of ion conducting

state, P
(ss)
4 (t), medium entropy production rate, Ṡ

(ss)
m (t) and system entropy produc-

tion rate, Ṡ
(ss)
sys (t) are plotted against oscillating voltage (sinusoidal) with frequency

ω/2π = 0.1, 100.0 and 5000.0 Hz, respectively at NESS over a time period. In
all cases hysteretic behavior is observed which vanishes at low and high frequency
domains.

Now similar kind of hysteretic behavior is present in the medium epr, (Ṡ
(ss)
m (t))-

voltage and also for the system epr(Ṡ
(ss)
sys (t))-voltage plots as shown in Fig.6.3(c)

and (d) at the non-equilibrium steady state for the same frequency values. Apart

from the vanishing hysteresis loop area at the limiting situations of low and high

frequencies, one can see from these plots that the values of both Ṡ
(ss)
m (t) and Ṡ

(ss)
sys (t)

tend to zero as ω → 0 (shown here with ω/2π = 0.1 Hz). However, at the high

frequency limit, these quantities have finite values although the corresponding hys-

teresis disappears. Ṡ
(ss)
m (t)-voltage plot becomes highly asymmetric in this limit

whereas Ṡ
(ss)
sys (t)-voltage plot is almost symmetric. This amounts to a finite value of

total epr implying that the steady state is a non-equilibrium steady state (NESS).

This is also true for any intermediate frequency value of the external voltage. Only

at ω → 0 limit, all the entropy production rates tend to zero and the NESS tends

to equilibrium.

For thorough analysis, we have plotted the total epr, (Ṡ
(ss)
tot (t)) vs voltage at the

NESS in Fig.6.4 at the frequencies mentioned in Fig.6.3. At the low frequency case
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Figure 6.4: Total entropy production rate, Ṡ
(ss)
tot (t) is plotted against oscillating volt-

age, V(t) at low, medium and high frequency values at steady state over a time
period which are depicted in figures (a), (b) and (c), respectively. In figure (d), the

normalized hysteresis loop area, Ah of current-voltage and Ṡ
(ss)
tot (t)-voltage curves are

plotted which passes through a maximum indicating that hysteresis is dynamic in
nature.

with the vanishing hysteresis loop area, Ṡ
(ss)
tot (t) becomes almost zero at the extremum

points of the voltage, Ve = ±Va(= ±45 mV) as shown in Fig.6.4(a). Hence at these

two points the system is only infinitesimally away from the equilibrium. Now at

very low frequency of the external voltage variation, the system can always adjust

to the instantaneous value of the voltage. Hence one can roughly picturize the

points Ve = ±45 mV as the classical turning points of a simple pendulum where the

pendulum becomes stationary momentarily. With increase in the frequency of V(t),

the response of the system to the external driving starts to lag. This is reflected in

the plot with ω/2π = 100 Hz in Fig.6.4(b) where Ṡ
(ss)
tot (t) becomes close to zero at

points 0 < |Ve| < Va. At ω → ∞, the system totally fails to sense the ultrafast

voltage variation and sees only the average voltage value, V0. In this limiting case,

the two points mentioned above merge at Ve = V0 = 0 mV as shown in Fig.6.4(c) for

ω/2π = 5000 Hz. We have also shown the variation of the hysteresis loop area, Ah

for the Ṡ
(ss)
tot (t) -voltage as well as the current-voltage hysteresis plots at the NESS in

Fig.6.4(d). The Ṡ
(ss)
tot (t) -voltage and current-voltage hysteresis loop area is calculated

numerically by integrating the value of Ṡ
(ss)
tot (t) and I(ss)(t) over a complete period of

oscillating voltage, V(t) according to the formula[181] Ah =
∮

α(V(t))dV, where α is

Ṡ
(ss)
tot (t) or I(ss)(t). It is clear that the hysteresis loop area for the two plots maximize

at close but different frequency values whereas at ω → 0 as well as at ω → ∞

limits, the hysteresis loop area goes to zero. Therefore, the hysteresis observed in

Ṡ
(ss)
tot (t)-voltage and I(ss)(t)-voltage curves are dynamic in nature. Interestingly, a
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close inspection of the Ṡ
(ss)
tot (t)-voltage plot reveals that these two frequency limits of

vanishing hysteresis are thermodynamically different as evident from the variation of

total epr with dynamic values of V(t). For the ω → 0 limit, the amplitude of Ṡ
(ss)
tot (t)

tends to zero as already mentioned whereas in the ω → ∞ limit, its amplitude tends

to a finite value.
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Figure 6.5: (a) Average entropy production rate over a period, 〈Ṡ
(ss)
tot (t)〉 is plotted

against frequency, ω/2π with amplitude, Va = 15, 30, 45 and 60 mV. The value of

〈Ṡ
(ss)
tot (t)〉 saturates at higher frequency values. (b) 〈[I(ss)(t)]sc〉 indicates the ionic

current over a period scaled with g(v) and is plotted against frequency, ω/2π with
the same amplitudes. With increasing the amplitude values, 〈[I(ss)(t)]sc〉 becomes

almost constant in the high frequency, however, 〈Ṡ
(ss)
tot (t)〉 increases with increase in

the value of amplitude, Va. We have also plotted the values of 〈Ṡ
(ss)
tot (t)〉 in the high

frequency limit (ω → ∞) obtained from Eq.(6.46) at various amplitudes denoted
with the label ‘theory’ and compared with the numerical results.

For more clarification of the above statement, we have plotted the average total

epr over a time period, 〈Ṡ
(ss)
tot (t)〉 in Fig.6.5(a) at NESS as a function of the frequency

of the external voltage with the average being defined as 〈Ṡ
(ss)
tot (t)〉 = 1

T

∫ T

0
Ṡ

(ss)
tot (t)dt.

From the figure one can see that the average total epr increases steadily from zero

at very low frequency to saturation at high frequency values. Therefore, the non-

equilibrium steady state reached by the system is infinitesimally close to equilibrium

at the ω → 0 limit whereas it is farthest from equilibrium at the ω → ∞ limit

for the given parameters of the model system and the amplitude of the external

voltage. This plot clearly shows that the low and high frequency limits associated

with vanishing hysteresis are indeed thermodynamically distinct. Furthermore, in

Fig.6.5(b), we have plotted the average current over a period, 〈[I(ss)(t)]sc〉 versus

frequency at different voltage amplitudes. Here the ‘sc’ superscript indicates that

the ionic current is scaled with the nonlinear conductance, g(v). As the form of g(V)
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is an experimentally determined empirical equation that can vary from experiment

to experiment, so to obtain the general behavior of ionic current we have calculated

the scaled current. From Fig. 6.5(b), it is observed that the average ionic current,

〈[I(ss)(t)]sc〉 increases to saturation with increase in the frequency value. It can be

seen from Fig.6.5(b) that in the high frequency limit, 〈[I(ss)(t)]sc〉 becomes almost

independent of amplitude. However, from Fig.6.5(a) it is evident that the high

frequency limiting value of 〈Ṡ
(ss)
tot (t)〉 increases sharply with increasing amplitude. In

Fig.6.5(a) we have also shown this limiting value of 〈Ṡ
(ss)
tot (t)〉 in the high frequency

limit (ω → ∞) obtained from the Eq.(6.46).

0 20000 40000

80

100

120

0 20000 40000
0

0.05

0.1

0.15

0 20000 40000

80

100

120

0 20000 40000
0

200

400

0 20000 40000
78.5

79

79.5

80

0 20000 40000
0

5000

10000

<
 [ 

I  
(t

) 
 ] 

>
<

 [ 
I  

(t
) 

 ] 
>

<
 [ 

I  
(t

) 
 ] 

>
sc

sc
sc

(s
s)

to
t

<
 S

   
 (

t)
 >

.
<

 S
   

 (
t)

 >
to

t
<

 S
   

 (
t)

 >
to

t

.

Va
2

aV2

a) b)

c) d)

e) ω = 1000 Hz/2π

ω/2π

ω π/2ω/2π

ω/2π

ω/2 π

= 10 Hz

= 0.1 Hz= 0.1 Hz

= 10 Hz

= 1000 Hz

aV 2 V 2
a

V2

f)

a aV2

(s
s)

(s
s)

.(s
s)

(s
s)

(s
s)

Figure 6.6: In figures (a),(c) and (e), average Ionic current over a period at steady
state, 〈[I(ss)(t)]sc〉 is plotted against square of the amplitude, V2

a at low (ω/2π = 0.1
Hz), medium (ω/2π = 10 Hz) and high frequency (ω/2π = 1000 Hz), respectively.

Average entropy production rate over a period at steady state, 〈Ṡ
(ss)
tot (t)〉 is plotted

against V2
a with the same frequency values which are depicted in (b),(d) and (f),

respectively.

For a clear understanding of the amplitude dependence of 〈Ṡ
(ss)
tot (t)〉 and 〈[I(ss)(t)]sc〉,

we have plotted these quantities as a function of V2
a for low, medium and high fre-

quency values at long time limit which is shown in Fig 6.6. For oscillating voltage,

V2
a is proportional to the energy supplied to the system and Ṡtot is a measure of

dissipative flux from the system. From Fig 6.6(a) and (c) it is observed that at low

and medium frequency, 〈[I(ss)(t)]sc〉 increases with increase in the value of V2
a after

passing through a minima. Such behavior is generated due to the consideration of

the current equation described in Eq.(6.54). However, at high frequency limit this

tendency vanishes and 〈[I(ss)(t)]sc〉 saturates with increase in the value of V2
a which

is shown in Fig 6.6(c). In Fig 6.6(b),(d) and (f), we have plotted 〈Ṡ
(ss)
tot (t)〉 as a func-
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Figure 6.7: The ionic current, I(ss)(t), total entropy production rate, Ṡ
(ss)
tot (t) and

oscillating voltage, V(t) are plotted with time at ω/2π = 5000Hz over an oscillation
period at NESS. Time required to complete an oscillation cycle is same for I(ss)(t)

but half for Ṡ
(ss)
tot (t) compared to that of voltage V(t).

tion of V2
a at low, medium and high frequency, respectively. From close inspection,

one can observe an interesting difference between the variations of 〈[I(ss)(t)]sc〉 and

〈Ṡ
(ss)
tot (t)〉 as a function of V2

a. In the low and medium frequency regions, 〈[I(ss)(t)]sc〉

goes on increasing with V2
a whereas 〈Ṡ

(ss)
tot (t)〉 increases to a saturation. This is evi-

dent from Fig. 6.6(a),(b),(c),(d). However, in the high frequency limit the situation

gets reversed as shown in Fig. 6.6(e),(f). Here 〈Ṡ
(ss)
tot (t)〉 increases nonlinearly with

V2
a but 〈[I(ss)(t)]sc〉 ultimately saturates. So the steep rise of the dissipation function

with the input power is associated with a limiting ionic current whereas when the

dissipation function gets saturated the current increases almost linearly as a function

of input power. Hence the fraction of input energy that goes out from the system

as unavailable energy governs the efficiency of the ion conduction.

We report another intriguing observation. We have plotted the ionic current,

I(ss)(t), the total entropy production rate, Ṡ
(ss)
tot (t) and oscillating voltage, V(t) at

high frequency, ω/2π = 5000Hz, over a period at steady state in Fig.6.7. In section

6.2.4, we have analytically shown that at high frequency limit Ṡ
(ss)
tot (t) oscillates with

a time period which is half of the external voltage, V(t). This analytical results is

now verified by numerical analysis which is depicted in Fig.6.7(b). However, the

time period of ionic current, I(ss)(t) is same as that of the external voltage which is

depicted in Fig.6.7(a).

6.5 Conclusion

In view of the physiological significance of the hysteretic response, here we have

given a non-equilibrium thermodynamic description of a voltage-gated Shaker Potas-
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sium ion channel expressed in mammalian cells using the stochastic master equation.

Starting from an experimentally proposed most suited five-state Markov process of a

Shaker Potassium ion channel, here the traditional single parameter Hodgkin-Huxley

equation is shown to be connected with the master equation corresponding to the

stochastic transitions between the five conformational states at fixed voltage. The

powered Boltzmann distribution of the steady state probability of ion-conducting

state is also obtained from the master equation in this case. Now from thermody-

namic analysis it is observed that for constant external voltage, the system reaches

equilibrium, indicated by the vanishing total entropy production rate.

For oscillating voltage, the current as well as the entropy production rates show

dynamic hysteresis with vanishing hysteresis loop area for very low and and very

high frequency of the external voltage. However, by analyzing the total entropy

production rate we have shown that the two limiting situations are thermodynam-

ically different. At very low frequency limit, system remains close to equilibrium

whereas, at high frequency it goes far away from equilibrium associated with a finite

amount of dissipation. To find the efficiency of the ion current production, the non-

equilibrium steady state(NESS) is characterized by the nonlinear dependence of the

dissipation function with the power of the external field. A strong nonlinear depen-

dence of unavailable energy flux with the input power dictates that an optimum limit

of frequency of the oscillating voltage is necessary for a reasonable steady ionic cur-

rent to appear. Another intriguing aspect is that the total entropy production rate

oscillates at NESS with half of the time period of the external voltage in the limit of

high frequency. We have also discussed on the extension of the present analysis to

multiple ion channels which is easier to tackle experimentally. The non-equilibrium

thermodynamical analysis done here for a Potassium-ion channel is also generically

valid for other Markov processes of similar ion conduction problems, namely, sodium

ion channels, ryanodine receptor and IP3 receptors[179].
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